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ABSTRACT
Understanding the differences in problem solving behavior
between groups of students is quite challenging. We have
mined the structure of interaction traces to discover different
approaches to solving logic problems. In a prior study, sig-
nificant differences in performance and tutor retention were
found between two groups of students, one group with ac-
cess to hints, and one without. The Approach Maps we
have derived help us discover differences in how students
in each group explore the possible solution space for each
problem. We summarize our findings across several logic
problems, and present in-depth Approach analyses for two
logic problems that seem to influence future performance in
the tutor for each group. Our results show that the students
in the hint group approach the two problems in statistically
and practically different ways, when compared to the control
group. Our data-driven approach maps offer a novel way to
compare behaviors between groups, while providing insight
into the ways students solve problems.
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1. INTRODUCTION
Intelligent tutors have been shown to be as effective as hu-
man tutors in supporting learning in many domains, in part
because of their individualized, immediate feedback, enabled
by expert systems that diagnose student’s knowledge states
[20]. For example, students provided with intelligent feed-
back in the LISP tutor spent 30% less time and performed
43% better on post-tests when compared to other methods
of teaching [1]. Similarly, Eagle, and Barnes showed that
students with access to hints in the Deep Thought logic tu-
tor spent 38% less time per problem and completed 19%
more problems than the control group [5]. In another study
on the same data, Stamper, Eagle, and Barnes showed that
students without hints were 3.6 times more likely to drop
out and discontinue using the tutor [19].

Procedural problem solving is an important skill in STEM
(science, technology, engineering, and math) fields. Open-
ended procedural problem solving, where steps are well-
defined, but can be combined in many ways, can encourage
higher-level learning [2]. However, understanding learning
in open-ended problems, particularly when students choose
whether or not to perform them, can be challenging. The
Deep Thought tutor allows students to use logic rules in dif-
ferent ways and in different orders to solve 13 logic proof
problems for homework. In this paper, we analyze the 2009
Deep Thought data set analyzed by Stamper, Eagle, and
Barnes to further understand the differences between the
hint and control groups.

The rich interaction data saved by transactional tutor logs
offers many avenues to explore and understand student prob-
lem solving data, particularly for problems with multiple so-
lutions. By mapping Deep Thought transactional data into
an interaction network, and applying graph mining to derive
regions based on the structure of this network, we develop
a new Approach Map that illustrates the approaches that
groups of students take in solving logic problems. We built
Approach Maps for all 13 problems in the tutor, and illus-
trate a detailed analysis of two of these maps to explore the
differences in problem solving between the hint and control
groups.

The Approach Maps for problems 1.4 and 1.5 show that
the hint group explored productive regions of the interac-
tion network, while students in the control group were more
likely to explore unproductive regions that did not lead to
solutions. Problem 1.4 had available hints for the hint group.
Even though problem 1.5 has no hints for either group, the
Approach Map shows that the two groups still explore the
problem space differently, illustrating that prior access to
hints had a lasting effect. The Approach Maps help us
discover unproductive regions of the problem-solving space,
that we believe contributed to lower retention rates for the
control group. In these regions, proactive hints could be
used to direct students toward more productive approaches.

In section 2, we discuss related work and the prior study
with Deep Thought. In section 4, we describe our algorithm
for extracting Approach Maps from data. Section 5 presents
the results and illustrates two detailed Approach Maps on
problems 1.4 and 1.5. Finally, we discuss the results, con-
clusions, and future directions for this work.
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2. RELATED WORK
Although they can be very effective, the construction of in-
telligent tutors can be costly, requiring content experts and
pedagogical experts to work with tutor developers to identify
the skills students are applying and the associated feedback
to deliver [12]. One way to reduce the costs of building tutor-
ing systems is to build data-driven approaches to generate
feedback during tutor problem-solving. Barnes and Stamper
built the Hint Factory to use student problem-solving data
for automatic hint generation in a propositional logic tutor
[17]. Fossati at el. implemented Hint Factory in the iList
tutor to teach students about linked lists[7]. Evaluation of
the automatically generated hints from Hint Factory showed
an increase in student performance and retention [19]; more
details about this study are provided in section 3.1.

Although individual differences affect the ways that stu-
dents solve problems [11], it is difficult to examine the over-
all approaches that groups of students demonstrate during
problem-solving. While pre and posttests are useful for mea-
suring the change in behavior before and after an experimen-
tal treatment, we are interested in studying not only whether
a student can solve a problem, but how they are solving
the problem. In this study, we use interaction networks of
student behaviors to investigate how providing hints affects
student problem-solving approaches.

Interaction Networks describe sequences of student-tutor in-
teractions [6]. Johnson et al. showed that visualizations
of interaction networks in the InVis tool could be used to
better understand how students were using the Deep Thou-
ght logic tutor [10]. Interaction networks form the basis
of the data-driven domain model for automatic step-based
hint generation by the Hint Factory. Eagle et al. applyied
Girvan-Newman clustering to interaction networks to deter-
mine whether the resulting clusters might be useful for more
high-level hint generation [6]. Stamper et al. demonstrated
the differences in problem solving between the hint and con-
trol groups by coloring the edges between Girvan-Newman
clusters of interaction networks based on the frequencies be-
tween two groups, revealing a qualitative difference in at-
tempt paths [19]. In this paper we expand on these works
to develop Approach Maps that concisely illustrate the ap-
proaches that students take while solving problems.

The Girvan-Newman algorithm (GN) was developed to clus-
ter social network graphs using edge betweenness to find
communities of people [8]. The technique also works in
other domains. Wilkinson et al. applied GN in gene net-
works to find related genes [21]. Gleiser et al. used GN to
discover essential ingredients of social interactions between
jazz musicians [9]. We are the first to apply GN to interac-
tion networks consisting of problem-solving steps.

In this paper, we mine the interactions from student problem
solving data to summarize a large number of student-tutor
transaction data into an Approach Map, demonstrating the
diverse ways students solve a particular problem. We use
Approach Maps to better understand the differences in be-
havior between two groups, students who were given access
to hints, and those who were not, while completing home-
work in the Deep Thought logic proof tutor.

3. THE DEEP THOUGHT LOGIC TUTOR
In Deep Thought propositional logic tutor problems, stu-
dents apply logic rules to prove a given conclusion using
a given set of premises. Deep Thought allows students to
work both forward and backwards to solve logic problems
[3]. Working backwards allows a student to propose ways
the conclusion could be reached. For example, given the
conclusion B, the student could propose that B was derived
using Modus Ponens (MP) on two new, unjustified (i.e. not
yet proven) propositions: A → B,A. This is like a condi-
tional proof in that, if the student can justify A → B and
A, then the proof is solved. At any time, the student can
work backwards from any unjustified components (marked
with a ?), or forwards from any derived statements or the
premises. Figure 1 contains an example of working forwards
and backwards with in Deep Thought.

Figure 1: This example shows two steps within the
Deep Thought tutor. First, the student has selected
Z ∧¬W and performed Simplification (SIMP) to de-
rive ¬W . Second, the student selects X ∨S and per-
forms backward Addition to derive S.

3.1 Dataset and Prior Results
In 2012, Stamper, Eagle, and Barnes studied the effect of
data-driven hints using the Spring and Fall 2009 Deep Thou-
ght propositional logic tutor dataset [19]. Data was collected
from six 2009 deductive logic courses, taught by three profes-
sors. Each instructor taught one class using Deep Thought
with automatically-generated hints on half of the problems
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(hint group, n=105) and one without access to hints on any
problems (control, n=98). Students from the 6 sections were
assigned 13 logic proofs in Deep Thought as a series of three
graded homework assignments, with problems L1: 1.1-1.6,
L2: 2.1-2.5, and L3: 3.1-3.2.

Table 1 shows retention information for each group after
level L1; a χ2 test of the relationship between group and
dropout produced χ2(1) = 11.05, which was statistically
significant at p = 0.001. The hint group completed more
problems, with the effect sizes for these differences shown
in Table 2. Stamper et al. found that the odds of a stu-
dent in the control group dropping out of the tutor were
3.6 times more likely when compared to the group provided
with automatically generated hints [19].

Table 1: Number of students that continued or
dropped out of the tutor after L1

Group Total # Continued # Dropped % Dropped

Hint 105 95 10 9%
Control 98 71 27 28%

Total 203 166 37 18%

Table 2: The effect sizes of the differences between
hint group and control group for completion and
attempt rates by level.

L1 L2 L3

Completed d = 0.51* d = 0.64* d = 0.39*
Attempted d = 0.27 d = 0.44* d = 0.33*

Figure 2 charts the attempt and completion rates for hint
group and control group for each problem in Deep Thou-
ght. Both groups had similar problem attempt rates, shown
using solid lines, for L1 (1.1-1.5), but the hint group had
significantly higher attempt rates in L2 and L3. The com-
pletion rates for each group are shown with dashed lines in
Figure 2. Note that, after problem 1.4, the differences in at-
tempt rates and completion rates seem to diverge between
the groups.
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Figure 2: Attempt and complete rates per level, *in-
dicates a problem where the hint group was given
access to automatically generated hints.

We have investigated these results further. In another study,
we modeled the time spent in the tutor using survival anal-
ysis [5]. In this study, we model the approaches students
took to solve each problem.

4. METHODS
In Section 4.1, we describe how we use Deep Thought tutor
logs to create an interaction network of all the student-tutor
interactions within a single problem. We then show how we
refine this network into regions of densely connected sub-
graphs (Section 4.2) using the Girvan-Newman (GN) algo-
rithm. Finally, in Section 4.2.1 we define how we construct
Approach Maps from the GN regions. For both steps in the
process, we use the statistical environment R [14], and the
complex network research library iGraph [4].

4.1 Constructing an Interaction Network
We construct an interaction network using all observed solu-
tion attempts to a single problem. Each solution attempt is a
sequence of {state, action, resulting-state} interactions from
the problem start to the last step a student performs. The
state represents enough information to regenerate the tutor’s
interface at each step. An action is defined as a step taken,
and consists of the name of the rule applied, the statements
it was applied to, and the resulting derived statement. For
example, Figure 1 displays two Deep Thought interactions.
The first interaction works forward from STEP0 to STEP1
with action SIMP (simplification) applied to (Z ∧ ¬W ) to
derive ¬W . The second interaction works backward from
STEP1 to STEP2 with action B − ADD (backwards ad-
dition) applied to (X ∨ S) to derive the new, unjustified
statement S.

We use a state matching function to combine identical states,
that consist of all the same logic statements, but may have
been derived in a different order. This way, the state for
a step STEP0, STEP1, or STEP2 in Figure 1 is the set
of justified and unjustified statements in each screenshot,
regardless of the order that each statement was derived. We
use an action matching function to combine actions, and
preserve the frequency of each observed application.

If we treat the interactions used to create the networks as
samples of observed behavior from a population, we could
expect that the interaction networks constructed from differ-
ent populations may have observable differences. However,
rather than building two separate interaction networks and
attempting to compare them, we construct a single network
but keep track of the frequencies of visits by the hint and
control groups for each state (vertex) and action (edge).

4.2 Extracting Regions
We partition the interaction network into densely connected
subgraphs we call regions using Girvan and Newman’s edge-
betweenness clustering algorithm [8] and modularity score, a
measure of the internal verses external connectedness of the
regions [13]. We use following algorithm to apply region la-
bels to nodes in a Deep Thought interaction network. First,
we remove the problem start state and goal states from the
Interaction Network IN to create G1. Then, we iteratively
remove all edges in G1, in order of edge betweenness. Edge
betweenness (EB) for a particular edge e is calculated by



computing all shortest paths between all pairs of nodes, and
counting the number of shortest paths that contain the edge
e. At each GN iteration i and graph Gi, we find the edge
with the highest EB, and call this bridge bi. We remove the
bridge bi from the graph Gi, and compute the modularity
score for the resulting graph Gi+1. The process is repeated
until all edges have been removed. Then, we assign identi-
fiers to all nodes in the disjoint regions in the intermediate
graph Gn with the best modularity score. At the end of this
process, we use Gn to construct the Approach Map with
nodes for the original start and goal states, and a new node
for each region in Gn. The Approach Map edges are the
edges that connect the start state and goals to the regions,
and the bridges between regions that were removed from the
interaction network to create Gn.

Regions represent sets of steps that are highly connected to
one another. When a solution attempt is within a region,
new actions will stay within the region, or take a bridge
edge into another region or goal. If an attempt is in a re-
gion with no goal bridges, the student must take a bridge to
another region to reach a goal. Therefore, paths on the Ap-
proach Map can be interpreted as a high-level approaches
to solving the problem. We hypothesize that we can use
the Approach Map to discover different problem-solving ap-
proaches. In the next section, we investigate Approach Maps
for two problems in Deep Thought, after which the hint and
control groups diverged in performance.

4.2.1 Approach Map
Here we provide a more detailed description of the algorithm
we use to generate an Approach Map from the interaction
network for a problem after its nodes have been labeled with
region identifiers. A region A (or action a) dominates a
region B if every path from the start of the problem to B,
must go through A (or a).

1. Combine all nodes with the same region identifier into
a single region node labeled with the identifier, and
remove all the edges with the same region identifier.

2. Combine all goal states that are dominated by a single
region into a single goal node.

3. Calculate chi-squared to find in-edge frequencies that
are different than expected between the groups (de-
scribed in more detail below).

4. Combine parallel bridge edges between two regions
into complex edges that represent the combination of
the actions.

5. Label each region with the post conditions (derived
statements) that result from the most frequent in-edge
actions.

6. Provide new region identifiers that indicate the signif-
icant regions by the group with larger than expected
frequency, with a number indicating the order in which
the region was formed. For example, the regions the
hint group visits more than expected are H1, H2, ...,
the regions the control group visits more than expected
are C1, C2, ..., and those that are visited as expected
by both groups are labeled N1, N2, etc.

We use a two-tailed chi-squared test to look for differences
between the hint and control groups in how they visit regions
in the Approach Map. The null hypothesis is that there is

no difference in the frequency of entering a particular region
between attempts in the hint group and the control group.
The alternative hypothesis is that the groups enter regions
with different than expected frequency. We use Bonferroni
correction [15] to compensate for the number of tests that we
run. When the p is less than the Bonferroni-corrected alpha,
we label the regions H1, H2, etc., blue for significantly higher
than expected participation by the hint group. Regions C1,
C2, etc., are bordered in orange and represent regions where
the control group was represented more frequently than ex-
pected. Regions N1, N2, etc., satisfy the null hypothesis in
that both groups visit these regions as expected.

The Approach Map for problem 1.4 is shown in Figure 3.
Each region node contains statements derived on the most
frequent in-edge. The bridge edges are those actions that
most frequently lead into and out of each region. The edges
are labeled with the action(s) taken and the number of at-
tempts using these actions. A bridge and its resulting region
can be read as, this many students performed the following
action(s) to derive the following proposition(s). For clar-
ity we do not draw edges with frequency less than ten, and
we delete actions and regions that become disconnected due
to these edge removals. The edges on the map are colored
on a spectrum based on the ratio between the groups from
blue (hint group) to orange (control group.) Paths in the
Approach Map can be interpreted as empirically-observed
problem solving approaches.

Each approach map is accompanied by a region table which
provides more detail about the frequencies of observed so-
lution attempts from each group. The columns Hint and
Control are the total frequencies of in-edges by each group,
or in other words, the number of solution attempts from each
group that visit at least one node in the region. Time refers
to the mean time a solution attempt stays in the region be-
fore exiting. Goals refers to the sum of the frequencies of
out-edges that lead to goal states. The p values are the
results of the chi-squared tests to compare group represen-
tation to expected values.

5. RESULTS & DISCUSSION
We perform our experiments on the Spring and Fall 2009
Deep Thought propositional logic tutor dataset as analyzed
by Stamper, Eagle, and Barnes in 2012[19]. The data set
is made up of 4301 student-attempts which contain 85454
student-tutor interactions across 13 problems. The prior
study compared the performance between the hint (n=105)
and control (n=98) groups, showing that students with avail-
able hints on the first 5 problems in L1 were 3.6 times more
likely to complete the tutor. In addition, the hint group
spent about 12 minutes per problem in the tutor, while the
control group took 21 minutes per problem. Although the
average total time in tutor between groups was not signifi-
cantly different, more in-depth analysis of time revealed that
this was because many students in the control group dropped
out of the tutor, and were less likely to complete problems
attempted in levels L2 and L3 [5]. In this section we present
the results of applying Approach Maps to 11 problems in this
data set, and illustrate the Approach Maps to two problems
1.4 and 1.5, just before the retention gap begins between the
hint and control groups.
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Table 3 summarizes our results from constructing Approach
Maps for 11 of the 13 Deep Thought problems (records for
problems 1.6 and 2.1 have not been normalized into our stan-
dard format). It is difficult to summarize the information
from each map in to a single row in a table, however we
have selected a few measures that provide an overview. In
Table 3, the Hint and Control columns count the number of
problem attempts for each group. Regions refers to the total
number of regions in each Approach Map. Sig-H and Sig-C
denote the number of regions visited significantly more than
expected by the hint and control groups respectively. Sig-
G denotes the number of significant regions that were also
goal regions. This table shows that most problems in Deep
Thought have 10-17 regions. In problems 1.4 and 1.5, more
than half of the regions were visited more than expected by
the hint or control groups.

Table 3: Summary of Approach Maps for 11 Deep
Thought tutor problems. An asterisk (*) indicates
problems where the hint group had access to hints.

Prob Hint Control Regions Sig-H Sig-C Sig-G

1.1* 348 447 16 1 7 2
1.2 196 187 16 1 2 1
1.3* 171 152 15 2 3 0
1.4* 138 219 16 5 4 2
1.5 155 218 18 4 6 2
2.2* 150 150 15 4 4 1
2.3* 129 108 14 4 3 1
2.4* 99 80 10 3 1 1
2.5* 112 79 10 3 0 1
3.1 173 114 17 0 1 0
3.2 147 100 12 1 2 0

We present detailed Approach Maps for problems 1.4 and 1.5
for three reasons. First, they occur before a large increase
in control group dropout, as shown in Figure 2 in Section
3.1. After these problems, the odds of the control group
dropping (no longer logging into the tutor) was 3.6 times
that of the hint group [19]. Second, these problems stand
out in Table 3, with high goal regions and more than half the
extracted regions being significantly different between the
groups. Third, in problem 1.4 the hint group had access to
hints, however in problem 1.5 neither group received hints.
This allows us to look for differences in behavior between
the groups when working in the tutor on equal terms. For
each of these problems we generated the Approach Map and
corresponding reference table and visualization as described
in Section 4.2.1.

5.1 Problem 1.4
Problem 1.4: Prove X ∨ S
Given: Z → (¬Y → X), Z ∧ ¬W,W ∨ (T → S),¬Y ∨ T

Problem 1.4 was designed to teach the Constructive Dile-
mma (CD) rule [((P → Q)∧ (R→ S))∧ (P ∨R)]→ (Q∨S).
For this problem, students in the hint group had access to
hints. Table 4 describes the regions of the Approach Map.
Figure 3 shows the Approach Map for problem 1.4. To show
differences in more detail, we have provided the most com-
mon attempts for each group in figure 4. In particular, this
figure shows that the control group has derived an unjusti-

fied statement T that cannot be proven.

Hints were available for the hint group on problem 1.4; Table
5 shows the number of hint requests at depths D1 to D4,
where students could request up to four consecutive hints
while in a single state. In Table 5, R is the region, D1–4
is the depth of the hint, Target Proposition refers to the
proposition the student is directed to derive, and Rule is
the rule that the student is directed to use. Depth D1 hints
direct students to the Hint column, while depth D2 hints
direct the students to the Rule column. Depth D3 tells
the student the preconditions needed to derive the target
proposition. The depth D4 hint is a bottom out hint that
directly tells the student what interface elements to click to
derive the target step.

Table 4: Detailed information on the regions in the
1.4 Approach Map shown in Figure 3.

Region Hint Control Time Goals p

H1 109 65 1.59 2 <0.001
H2 89 43 1.71 81 <0.001
H3 19 3 1.34 22 <0.001
C1 9 106 0.41 0 <0.001
C2 6 68 0.41 0 <0.001
C3 5 62 1.95 0 <0.001
C4 24 134 0.32 0 <0.001
N1 22 51 0.9 0 0.089
N2 9 15 1.41 20 0.811
N3 10 23 1.47 2 0.261
N4 14 38 0.13 0 0.056

Table 5: Number and depth of hints used by the
hint group in each region; PS=Problem Start

R D1 D2 D3 D4 Target Proposition Rule

PS 50 13 13 4 ¬W SIMP
H1 36 17 11 5 Z SIMP
H1 32 16 11 5 T → S DS
H1 29 17 10 3 ¬Y → X MP
H2 36 19 18 2 (¬Y → X) ∧ (T → S) CONJ
H2 21 17 12 3 X ∨ S CD

There are three obvious paths in the Approach Map in Fig-
ure 3, one for the hint group, one for the control, and one
with no differences between the groups. Figure 4 shows the
most common solution paths for the hint and control group,
with the same edges as the Approach Map. The Hint group
tends to work forward using simplification (SIMP) (H1 to
H2), while the control group was more likely to work back-
wards with addition (B-ADD) (C4 to C1). This backward
addition path is a buggy strategy, that does not lead to any
goals. We note that there are no backwards hints given in
Deep Thought, so students on this path do not get hints
regardless of group. Data on hint usage, shown in Table
5 and the statements derived in the H1-H3 regions suggest
that students in the Hint group are being “routed” toward a
successful strategy.

The Approach Map in Figure 3 shows that the control group
is more likely to visit regions that do not contain successful
goals. It seems that the effect of hints is to keep students
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Figure 3: The Approach Map for problem 1.4. Edges and vertexes can be read as the number of students
who performed action(s) to derive proposition(s). Three main approaches are revealed, with the hint group
strongly preferring to work the problem forwards. The control group often attempts to solve the problem by
wards with addition, there are no goals along this path. More detail is given in Table 4.

along a particular solution path, or prevent them from fol-
lowing the unproductive one taken by the control group. As
a prior study of this data suggests [18], these students with-
out hints are likely to abandon the tutor altogether. We
hypothesize that hints help students achieve small successes
and remain in the tutoring environment.

Figure 4: The most common attempt paths for each
of the main approaches in the approach map for
problem 1.4 (figure 3.) The highlighted nodes rep-
resent unjustified propositions.

5.2 Problem 1.5
Problem 1.5: Prove A∨¬C, given: B → (A→ E), B∨(A→
¬C), D ∧ ¬(A→ ¬C), E → ¬C.

Problem 1.5 was designed to teach the Hypothetical Syllo-
gism (HS) axiom [(P → Q)∧(Q→ R)]→ (P ∨R). Problem
1.5 is interesting, as this problem had no hints, but still has
large differences between the groups. The Approach Map is
shown in Figure 5, and additional information on the regions
is available in Table 6.

Table 6: Detailed information on the regions in the
1.5 Approach Map shown in Figure 5.

Region Hint Control Time Goals p

H1 53 39 0.42 82 0.002
H2 89 58 1.16 26 <0.001
C1 17 55 0.69 0 0.002
C2 36 106 0.19 0 <0.001
C3 24 65 2.41 0 0.005
C4 16 51 0.72 0 0.003
C5 30 81 1.2 0 0.002
C6 3 19 0.22 0 0.007
N1 7 14 2.27 0 0.434
N2 7 8 1.16 11 0.700
N3 2 12 3.38 0 0.037
N4 8 15 0.26 0 0.498

The Hint group approaches problem 1.5 by working forward
using simplification (SIMP) on D∧B to derive the separate
statements D and B; this could be a result of the forward di-
rected hints they received in the earlier problems. The hints
may have helped students develop a preference to working
forwards, as doing so allowed them to request help if they
became stuck. This preference carried over to the problems
where hints were not available.
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Figure 5: Even in the absence of the automatically generated hints, the hint group still prefers a forward
solution. The control group explores regions that do not lead to goals. Details are given in Table 6.

When working problem 1.5, the control group systemati-
cally derives statements that do not lead to goals. The most
common attempt is to work backwards with disjunctive syl-
logism (B-DS) (region C2) to derive B∨(A→ ¬C),¬B from
the conclusion A → ¬C. This is likely because connecting
with the premise B ∨ (A → ¬C) seems like a promising di-
rection. However, it is not possible to justify the proposed
proposition ¬B in this problem. This discovery is important
as interventions can be added to warn away from regions
that do not lead to goals. For example, we could offer a
message that warns them that most students who attempt
the same type of proof are not successful. Fossati et al.
showed that human tutors helping students with the iList
tutor, suggest that students delete unproductive steps [7].

5.3 Working Backwards and Trailblazing
Although working backwards seems be unproductive for the
control group, we note that there are productive approaches
that work backwards, for example N1-N4 regions in prob-
lem 1.4 explored evenly by both groups. There are some
advantages to working backwards in Deep Thought. When
a student works backwards, Deep Thought asks whether
they would like to target the premises (extraction) or con-
struct their own hypothesized statement from the conclu-
sion. Then, the student clicks on one of just a few rules
that can be used backwards, limiting the search space for
the next step. Next, students are prompted to fill in the
blanks in statements derivable from the chosen rule.

Region N1 in Figure 3, shows variables p and r that stu-
dents can set to any proposition. Should the newly derived
statements seem to match the patterns of existing premises,
students keep them; otherwise they delete and try again.

Deep Thought will sometimes warn students when they try
to work backwards with something that is not justifiable.
However, this may lead students to think that the tutor can
always determine when working backwards is a viable strat-
egy. In this case, students might mistakenly suppose that
if there is no error message, they are closer to the solution.
This is not the case, as Deep Thought has no built-in mea-
sures to determine closeness to completion. Rather, a few
buggy rule applications are included in Deep Thought’s au-
tomated error detection.

5.3.1 Trailblazing Effect
Barnes and Stamper proposed that hints might limit the
breadth of student approaches to problems, causing a hint
‘trailblazing’ effect that might bias students toward expert
solutions when originally building the Hint Factory[16]. In
this analysis, we see some evidence of this effect. The dif-
ference in solution breadth between the two groups seems
to be significant on several problems. The hints provided
were limited to working forward, and the hint group demon-
strated a strong preference for working forward. It remains
to be seen whether providing hints for working backward
will allow for more breadth of the search space. In any case,
our results suggest that hints can cause a trailblazing effect,
even when no hints are provided. Therefore, hints should be
carefully constructed to include the diversity that a tutor
designer wishes to promote in the tutor.

5.4 Conclusions and Future Work
In this paper, we have presented Approach Maps, a novel
representation of student-tutor interaction data that allows
for the comparison of problem-solving approaches on open-
ended logic problems. The Approach Map visualization re-
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sults in a significant reduction in the space needed to de-
scribe a large amount of student-tutor data. It does this by
reducing the student attempts into regions that we can con-
sider as higher-level approaches to problem-solving. Deep
Thought problems each had an average of 330 solution at-
tempts, which were made up of about 6.5 thousand inter-
actions. Using our Approach Maps, we partition problems
into about 15 regions each (including 2–3 goal regions, as
shown in Table 3).

We have shown that we can use Approach Maps annotated
with frequencies of visits by two groups to identify regions
where a particular study group was over-represented. This
allowed us to examine the approaches each group took to
solving each proof. As we predicted, the automatically gen-
erated hints seemed to direct the students in the hint group
down a common path, and we were able to detect this with
the Approach Maps. Interestingly, even in problem 1.5,
where neither group had hints, the hint group still showed a
preference for working forwards, providing some evidence
for a persistent effect of the hints. Analyzing Approach
Maps also facilitated another important discovery that con-
trol group tended enter and remain in unproductive (or
buggy) regions. These observed differences help explain how
the automatically-generated hints produced the difference in
tutor performance and retention in the 2009 Deep Thought
study. Our investigations suggest that the patterns of be-
havior exhibited by students do result in meaningful regions
of the solution attempt search space. We believe that, since
the algorithms we applied to derive Approach Maps work
on general graphs, we may be able to apply Approach Maps
to understand problem-solving in domains where students
solve open-ended problems in a procedural way.

In our future work, we plan to use Approach Maps to provide
students with hints towards target sub-goals rather than
simple step-based hints. We could also combine this with
expert-created subgoals. We hypothesize that these more
abstract hints will help encourage student planning. We also
plan to use Approach Maps to provide proactive feedback to
students when they enter unproductive regions. We will also
apply Approach Maps to other open-ended problems to in-
vestigate their generalizability to other STEM fields.
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