
EduRank: A Collaborative Filtering Approach to
Personalization in E-learning

Avi Segal, Ziv Katzir, Ya’akov (Kobi) Gal,
Guy Shani

Dept. of Information Systems Engineering
Ben-Gurion University, Israel

Bracha Shapira
Dept. of Information Systems Engineering and

Telekom Innovation Laboratories
Ben-Gurion University, Israel

ABSTRACT
The growing prevalence of e-learning systems and on-line courses
has made educational material widely accessible to students of vary-
ing abilities, backgrounds and styles. There is thus a growing need
to accomodate for individual differences in such e-learning sys-
tems. This paper presents a new algorithm for personliazing educa-
tional content to students that combines collaborative filtering algo-
rithms with social choice theory. The algorithm constructs a “dif-
ficulty” ranking over questions for a target student by aggregating
the ranking of similar students, as measured by different aspects of
their performance on common past questions, such as grades, num-
ber of retries, and time spent solving questions. It infers a difficulty
ranking directly over the questions for a target student, rather than
ordering them according to predicted performance, which is prone
to error. The algorithm was tested on two large real world data sets
containing tens of thousands of students and a million records. Its
performance was compared to a variety of personalization methods
as well as a non-personalized method that relied on a domain ex-
pert. It was able to significantly outperform all of these approaches
according to standard information retrieval metrics. Our approach
can potentially be used to support teachers in tailoring problem sets
and exams to individual students and students in informing them
about areas they may need to strengthen.

1. INTRODUCTION
Education is increasingly mediated by technology, as attested by
the prevalence of educational software in schools and the explosion
of on-line course opportunities. As a result, educational content
is now accessible to student communities of varied backgrounds,
learning styles and needs. There is thus a growing need for per-
sonalizing educational content to students in e-learning systems in
a way that adapts to students’ individual needs [20, 1]. A popular
approach towards personalization in e-learning is to sequence stu-
dents’ questions in a way that best matches their learning styles or
gains [2, 28].

This paper provides a novel algorithm for sequencing content in
e-learning systems that directly creates a “difficulty ranking” over
new questions. Our approach is based on collaborative filtering [6],
which generates a difficulty ranking over a set of questions for a

target student by aggregating the known difficulty rankings over
questions solved by other, similar students. The similarity of other
students to the target student is measured by their grades on com-
mon past question, the number of retries for each question, and
other features. Unlike other uses of collaborative filtering in edu-
cation, our approach directly generates a difficulty ranking over the
test questions, without predicting students’ performance directly on
these questions, which may be prone to error.1

Our algorithm, called EduRank, weighs the contribution of these
students using measures from the information retrieval literature. It
allows for partial overlap between the difficulty rankings of a neigh-
boring student and the target student, making it especially suitable
for e-learning systems where students differ in which questions
they solve. The algorithm extends a prior approach for ranking
items in recommendation systems [15], which was not evaluated on
educational data, in two ways: First, by using social choice theory
to combine the difficulty rankings of similar students and produce
the best difficulty ranking for the target student. Second, EduRank
penalizes disagreements in high positions in the difficulty ranking
more strongly than low positions, under the assumption that errors
made in ranking more difficult questions are more detrimental to
students than errors made in ranking of easier questions.

We evaluated EduRank on two large real world data sets contain-
ing tens of thousands of students and about a million records. We
compared the performance of EduRank to a variety of personal-
ization methods from the literature, including the prior approach
mentioned above as well as other popular collaborative filtering ap-
proaches such as matrix factorization and memory-basedK nearest
neighbours. We also compared EduRank to a (non-personalized)
ranking created by a domain expert. EduRank significantly outper-
formed all other approaches when comparing the outputted diffi-
culty rankings to a gold standard.

The contribution of this paper is two-fold. First, we present a novel
algorithm for personalization in e-learning according to the level of
difficulty by combining collaborative filtering with social choice.
Second, we outperform alternative solutions from the literature on
two real-world data sets. Our approach can potentially be used
to support both teachers and students, by automatically tailoring
problem sets or exams to the abilities of individual students in the
classroom, or by informing students about topics which they need
to strengthen. Lastly, it can also augment existing ITS systems by
integrating a personalized order over questions into the interaction
process with the student.

1To illustrate, in the KDD cup 2010, the best preforming grade
prediction algorithms exhibited prediction errors of about 28% [25]

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 68

2. BACKGROUND
In this section we briefly review relevant approaches and metrics in
recommendation systems, social choice, and information retrieval.

2.1 Recommendation Systems and Collabora-
tive Filtering

Recommender systems actively help users in identifying items of
interest. For example, the prediction of users’ ratings for items,
and the identification of the top-N relevant items to a user, are pop-
ular tasks in recommendation systems. A commonly used approach
for both tasks is Collaborative Filtering (CF), which uses data over
other users, such as their ratings, item preferences, or performance
in order to compute a recommendation for the active user.

There are two common collaborative filtering approaches [6]; In the
memory-based K nearest neighbor approach, a similarity metric,
such as the Pearson correlation, is used to identify a set of neigh-
boring users. The predicted rating for a target user and a given item
can then be computed using a weighted average of ratings of other
users in the neighborhood. In the model based approach, a statisti-
cal model between users and items is created from the input data.
For example, the SVD approach [21] computes a latent feature vec-
tor for each user and item, such that the inner product of a user and
item vectors is higher when the item is more appropriate for the
user.

While rating prediction and top-N recommendations are widely re-
searched, not many recommendation system applications require
ranking. Thus, there were only a few attempts to use CF approaches
to generate rankings. Of these, most methods order items for target
users according to their predicted ratings. In contrast, Liu et al. de-
veloped the EigenRank algorithm [15] which is a CF approach that
relies on the similarity between item ratings of different users to di-
rectly compute the recommended ranking over items. They show
this method to outperform existing collaborative filtering methods
that are based on predicting users’ ratings.

Using the ratings of similar users, EigenRank computes for each
pair of items in the query test set so-called potential scores for the
possible orderings of the pair. Afterward, EigenRank converts the
pair-wise potentials into a ranked list. EigenRank was applied to
movie recommendation tasks, and was shown to order movies by
rating better than methods based on converting rating predictions
to a ranked list.

2.2 Social Choice
Social Choice Theory originated in economics and political sci-
ence, and is dealing with the design and formal analysis of methods
for aggregating preferences (or votes) of multiple agents [11]. Ex-
amples of such methods include voting systems used to aggregate
preferences of voters over a set of candidates to determine which
candidate(s) should win the election, and systems in which voters
rank a complete set of candidates using an ordinal scale. One such
approach which we use in this paper is Copeland’s method [8, 17]
ordering candidates based on the number of pairwise defeats and
victories with other candidates.

The Copland score for an alternative qj is determined by taking the
number of those alternatives that qj defeats and subtracting from
this number those alternatives that beat qj . A partial order over the
items can then be inferred from these scores. Two advantages of
this method that make it especially amenable to e-learning systems

with many users (e.g., students and teachers) and large data sets are
that they are quick to compute and easy to explain to users [22].
Pennock et al. [19] highlighted the relevance of social choice to CF
and the importance of adapting weighted versions of voting mech-
anisms to CF algorithms. Our algorithm represents an application
of this approach to e-learning systems.

2.3 Metrics for Ranking Scoring
A common task in information retrieval is to order a list of results
according to their relevance to a given query [29]. Information
retrieval methods are typically evaluated by compering their pro-
posed ranking to that of a gold standard, known as a “reference
ranking”, which is provided by the user or by a domain expert.

Before describing the comparison metrics and stating their rele-
vance for e-learning systems, we define the following notations:
Let

(
L
2

)
denote the set of all non ordered pairs in L. Let � be a

partial order of a set of questions L. We define the reverse order of
� over L, denoted � as a partial order over L such that if qj � qk
then qk�qj . Let �1 and �2 be two partial orders over a set of
questions L, where �1 is the reference order and �2 is the sys-
tem proposed order. We define an agreement relation between the
orders �1 and �2 as follows:

• The orders�1 and�2 agree on questions qj and qk if qj �1

qk and qj �2 qk.

• The orders �1 and �2 disagree on questions qj and qk if
qj �1 qk and qk �2 qj .

• The orders �1 and �2 are compatible on questions qj and
qk if qj �1 qk and neither qj �2 qk nor qk �2 qj .

Given a partial order � over questions Q, the restriction of � over
L ⊆ Q are all questions (qk, ql) such that qk � ql and qk, ql ∈ L.

2.3.1 Normalized Distance based Performance
The Normalized Distance based Performance Measure (NDPM) [26,
24] is a commonly used metric for evaluating a proposed system
ranking to a reference ranking . It differentiates between correct or-
ders of pairs, incorrect orders and ties. Formally, let δ�1,�2(qj , qk)
be a distance function between a reference ranking �1 and a pro-
posed ranking �2 defined as follows:

δ�1,�2(qj , qk) =


0 if �1 and �2 agree on qjand qk,
1 if �1 and �2 are compatible on qjand qk,
2 if �1 and �2 disagree on qjand qk.

(1)

The total distance over all question pairs in L is defined as follows

β�1,�2(L) =
∑

(qj ,qk)∈(L2)

δ�1,�2(qj , qk) (2)

Let m(�1) = argmax�β�1,�(L) be a normalization factor which
is the maximal distance that any ranking � can have from a refer-
ence ranking �1 . The NDPM score sND(L,�1,�2) comparing
a proposed ranking of questions �2 to a reference ranking �1 is
defined as

sND(L,�1,�2) =
β�1,�2(L)

m(�1)
(3)

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 69

Intuitively, the NDPM measure will give a perfect score of 0 to dif-
ficulty rankings over the set in L that completely agree with the
reference ranking, and a worst score of 1 to a ranking that com-
pletely disagrees with the reference ranking. If the proposed rank-
ing does not contain a preference between a pair of questions that
are ranked in the reference ranking, it is penalized by half as much
as providing a contradicting preference.

The evaluated ranking is not penalized for containing preferences
that are not ordered in the reference ranking. This means that for
any question pair that were not ordered in the true difficulty rank-
ing, any ordering predicted by the ranking algorithm is acceptable.
Not penalizing unordered pairs is especially suitable for e-learning
systems in which some questions for the target student in L may
not have been solved by other students and these questions may
remain unordered in the difficulty ranking.

2.3.2 AP Rank Correlation
A potential problem with the NDPM metric is that it does not con-
sider the location of disagreements in the reference ranking. In
some cases it is more important to appropriately order items that
should appear closer to the head of the ranked list, than items that
are positioned near the bottom. For example, when ranking movies,
it may be more important to properly order the movies that the user
would enjoy, than to properly order the movies that the user would
not enjoy. Similarly, we assume that the severity of errors in rank-
ing questions depends on their position in the ranked list. As we are
interested in sequencing questions by order of difficulty, properly
predicting how easy questions should be ordered is not as important
as avoiding the presentation of a difficult question too early, result-
ing in frustration and other negative effects on the student learning
process. Therefore, when evaluating a ranked list of questions, it
is often important to consider the position of the questions in the
ranked list. We would like to give different weights to errors de-
pending on their position in the list.

To this end, we can use the AP correlation metric [27], which gives
more weight to errors over items that appear at higher positions in
the reference ranking. Formally, let �1 be the reference ranking
and�2 be a proposed ranking over a set of items. The AP measure
compares the order between each item in the proposed ranking �2

with all items that precede it with the ranking in the reference rank-
ing �1.

For each qk, qj ∈ L, k 6= j, let the set Zk(L,�2) denote all ques-
tion pairs (qk, qj) in L such that qj �2 qk. These are all the ques-
tions that are more difficult to the student than question qk.

Zk(L,�2) = {(qj , qk) | ∀qj 6= qk s.t. qj �2 qk and qj , qk ∈ L}
(4)

We define the indicator function IA(qj , qk,�1,�2) to equal 1 when
�1 and �2 agree on questions qj and qk.

LetAk(L,�1,�2) be the normalized agreement score between�2

and the reference ranking �1 for all questions qj such that qj �i

qk.

Ak(L,�1,�2) =
1

k − 1

∑
(qj ,qk)∈Zk(L,�2)

IA(qj , qk,�1,�2)

(5)
The AP score of a partial order�2 over L given partial order�1 is

defined as

sAP (L,�1,�2) =
1

|L| − 1

∑
k∈|L|

Ak(L,�1,�2) (6)

The sAP score gives a perfect score of 1 to systems where there
is total agreement between the system proposed difficulty ranking
and the reference ranking for every question pair above location i
for all i ∈ L. The worst score of 0 is given to systems were there
is no agreement between the two ranked lists.

3. PROBLEM DEFINITION AND
APPROACH

We now formalize our problem and the approach used. The “dif-
ficulty ranking problem” includes a target student si, and a set of
questionsLi, for which the algorithm must predict a difficulty rank-
ing �̂i over Li. The predicted difficulty ranking �̂i is evaluated
with respect to a difficulty reference ranking �i over Li using a
scoring function s(�̂i,�i, Li).

To solve this problem, we take a collaborative filtering approach,
which uses the difficulty rankings on Li of other students simi-
lar to si to construct a difficulty ranking over Li for student si.
Specifically, the input to the problem includes: (1) A set of students
S = {s1, s2, ..., sm}; (2) A set of questions Q = {q1, q2, ..., qn};
(3) For each student sj ∈ S, a partial difficulty ranking �j over a
set of questions Tj ⊆ Q.

For every student sj ∈ S there are two disjoint subsets Tj , Lj ∈ Q,
where the difficulty ranking of sj over Tj is known, and is a restric-
tion of�j over all the questions in Q. Intuitively, for a a target stu-
dent si ∈ S, Ti represent the set of questions that the target student
si has already answered, while Li is the set of questions for which
a difficulty ranking needs to be produced.

The collaborative filtering task is to leverage the known rankings of
all students sj over Tj in order to compute the required difficulty
ranking �̂i over Li for student si.

4. THE EDURANK ALGORITHM
We now present our EduRank algorithm for producing a personal-
ized difficulty ranking over a given set of questions Li for a target
student si. EduRank estimates how similar other student are to si,
and then combines the ranking of the similar students over Li to
create a ranking for si. There are two main procedures to the al-
gorithm: computing the student similarity metric, and creating a
difficulty ranking based on the ranking of similar users.

For comparing the target student si to potential neighbors, we use
the sAP metric to encourage greater similarity between students
with high agreement in top positions in their respective rankings.

For aggregating the different students’ rankings to create a diffi-
culty ranking for the target student, we use the Copeland method
(Section 2.2). We treat each question as a candidate and look at
the aggregated voting of neighbors based on their similarity metric.
In our aggregated voting calculation, candidate i beats candidate j
if the similarity normalized number of wins of i over j computed
over all neighbors is higher than the similarity normalized number
of loses. The Copeland method then computes for each candidate
question the overall number of aggregated victories and aggregated
defeats and ranks the candidates accordingly. Before presenting
the algorithm we first define γ(qk, ql,�) over question pairs qk, ql

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 70

Algorithm 1 EduRank
INPUT:
Set of students S.
Set of questions Q.
For each student sj ∈ S, a partial ranking �j over Tj ⊆ Q.
Target student si ∈ S.
Set of questions Li to rank for si.
OUTPUT: a partial order �̂i over Li.
1: for each q ∈ Li do
2: c(q) =

∑
ql∈L\q

rv(q, ql, S)
3: end for
4: �̂i ← {∀(qk, ql) ∈

(
Li
2

)
, qk�̂iql iff c(qk) > c(ql)}

5: return �̂i

given a difficulty ranking � as follows:

γ(qk, ql,�) =


1 if qk � ql
−1 if ql � qk
0 otherwise

(7)

The relative voting rv(qk, ql, S) of two questions qk, ql given the
difficulty rankings of a group of (neighboring) students S is

rv(qk, ql, S) = sign(
∑

j∈S\i

sAP (Ti,�i,�j) · γ(qk, ql,�j)) (8)

The Copeland score c(q, S, Li) of a question q given the difficulty
rankings of students S and test questions Li is

c(q, S, Li) =
∑

ql∈Li\q

rv(q, ql, S) (9)

The EduRank algorithm is shown in Algorithm 1. The input to the
EduRank algorithm is a set of students S = {s1, . . . , sn}, each
with a known ranking over a set of questions Tj , such that Q =
T1 ∪ . . . ∪ Tn. In addition the algorithm is given a target student
si ∈ S, and a set of questions Li ⊆ Q that needs to be ranked for
si. The output of the algorithm is a ranking of the questions in Li.

The algorithm computes a ranking score c(q) for each question q ∈
Li, which is the Copeland score for that question, as defined above.
The algorithm returns a partial order for student si over the test set
Li where questions are ranked by decreasing Copeland score c(q).

5. EMPIRICAL EVALUATION
We now describe a set of experiments comparing EduRank to other
algorithms on the difficulty ranking problem. We describe the datasets
that were used and our method for defining a difficulty ranking,
then we discuss the performance of the various algorithms.

5.1 Datasets
We conducted experiments on two real world educational datasets.
The first dataset was published in the KDD cup 2010 by the Pitts-
burgh Science of Learning Center (PSLC) 2 [13]. We used the
Algebra 1 dataset from the competition, containing about 800,000
answering attempts by 575 students, collected during 2005-2006.
We used the following features for each question: question ID, the
number of retries needed to solve the problem by the student, and

2https://pslcdatashop.web.cmu.edu/KDDCup

the duration of time required by the student to submit the answer.3

If the number of retries needed to solve the problem was 0, this
means the students solved the problem on a first attempt (we refer
to this event as “correct first attempt”).

The second dataset, which we call K12, is an unpublished dataset
obtained from an e-learning system installed in 120 schools and
used by more than 10,000 students. The records in this dataset
were anonymized and approved by the institutional review board of
the Ben-Gurion university. This dataset contains about 900,000 an-
swering attempts in various topics including mathematics, English
as a second language, and social studies. We used the following
features for each question: question ID, the answer provided by the
student and the associated grade for each attempt to solve the ques-
tion. Unfortunately, this dataset does not contain time stamps for
each provided response, so we cannot compute the duration of time
until a question was answered.

5.2 Feature Selection for Difficulty Ranking
EduRank assumes that each student has a personal difficulty rank-
ing over questions, as described in Section 3. In this section we
show how we inferred this ranking from the features in the dataset.
An obvious candidate for the difficulty ranking are the grades that
the student got on each question. There are several reasons however
as to why grades are an insufficient measurement of difficulty. First,
in all questions in the PSLC dataset, the “Correct First Attempt”
score is either 0 or 1. There were a number of multiple choice ques-
tions (between 3 and 4 possible answers) in the datasets, but the
dichotomy between low and high grades was also displayed here.
To understand this dichotomy, note that students were allowed to
repeat the question until they succeeded. It is not surprising that
after several retries most students were able to identify the correct
answer. A zero grade for a question occurs most often when it was
not attempted by the student more than once.

An alternative approach is to consider additional features in ad-
dition to grades (or correct first attempts), that are present in the
datasets, and which correlate with the difficulty of the question for
the individual student. Specifically, we assumed that questions that
were answered correctly on a first attempt were easier for the stu-
dent, while questions that required multiple attempts were harder.
We also assumed that questions that required more solution time,
as registered in the log, were more difficult to the students.

We realize that these two properties are not perfect indicators of
question difficulty for the student. Indeed, it may occur in multiple
choice questions that a student guessed the correct answer on the
first attempt, even though the question was quite difficult. We also
do not account for “gaming the system” strategies that have been
modeled in past ITS work [4]. It may also be the case that the
length of time reported by the system represents idle time for the
student who was not even interacting with the e-learning software,
or simply taking a break. However, as we show later in this section,
these properties provide a reasonable estimation for the difficulty of
the question.

We proceed to describe the following method for identifying the
difficulty ranking. We begin by ranking questions by grades. In
the PSLC dataset we use “correct first attempt” for this, and in the
K12 dataset we find it more informative to use the grade that the

3Note there were other features in this data-set that were not used
in the study.

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 71

(a) Grades (b) Difficulty Ranking

Figure 1: Distribution over grades and difficulty ranking positions for K12 dataset

student got on her first attempt. After ranking by grade, we break
ties by using the number of attempts that the student took before
submitting the correct answer. When the student did not achieve a
correct answer we use all the attempts that the student has made.
Then, we break ties again on the PSLC dataset using the elapsed
time.

To demonstrate that in general, these properties provide a reason-
able estimation for the difficulty of the question, Figure 1 shows a
distribution over students’ grades (left) and positions in the inferred
difficulty ranking which considered grades and retries (right). Note
that the different values for grades represent answers to multiple se-
lect questions. For example, a grade of 0.9 will be achieved when
9/10 correct answers were selected by the student. As can be clearly
seen from the figure, there are substantially more classes in the dif-
ficulty ranking when adding additional features.

5.3 Methods
We used two ranking scoring metrics — NDPM and AP (Sec-
tion 2.3). Many papers in information retrieval also report NDCG,
which is a ranking metric for datasets where each item has a score,
and thus measures the difference in scores when ranking errors oc-
cur. In our case, where we do not have meaningful scores, only
pure rankings, NDCG is less appropriate [12].

We compared the performance of a number of different methods to
EduRank. First, we used the original EigenRank algorithm, which
differs from EduRank in the similarity metric between users as well
as the aggregation of the neighbor rankings.

As we explained in section 2.1, a popular alternative in the rec-
ommendation systems literature is to predict a score for an item,
and then rank by sorting predicted scores. Thus we also used two
popular collaborative filtering methods — a memory-based user-
user KNN method using the Pearson correlation (denoted UBCF
for User Based Collaborative Filtering), and a matrix factorization
method using SVD (denoted SVD) to compute latent factors of
items and users [6, 30]. In both cases we used the Mahout4 im-
plementation of the algorithms [23].

The collaborative filtering algorithms require an item score as an

4https://mahout.apache.org/

input. We used the following scores; We began with the grade
(first attempt) that the user got on a question, normalized to the
[0 − 1] range. For each retry of the question we reduce this grade
by 0.2 points. For the PSLC dataset, we reduce the (normalized)
elapsed time solving the question from the score. This scoring
method closely captures the difficulty ranking order we describe
above. In the K12 dataset we also compared to a non-personalized
difficulty ranking from 1-5 for each question, supplied by a domain
expert (typically the researcher or teacher authoring the question).
We denote this content expert ranking using CER.

Finally, it is common in the educational literature to identify the
mastery level of the student on various topics, and then predict the
performance of a question from the mastery level of the topic of
the question [9]. To implement such an approach we computed the
average score (using the scoring mechanism above) that the student
got for all questions that belong to the same topic. We then rank
the topics by decreasing average score, and rank the questions by
the topic they belong to. We denote this method the Topic-Based
Ranker (TBR). This measure was used only on the K12 dataset
where we have available topic data.

5.4 Results
Based on the problem defined in section 3, we ran the following
experiment— for each student si we split her answered questions
into two sets of equal size: a train set Ti, which is given as input
to the various algorithms, and a test set Li that the algorithms must
rank. The split is performed according to the time stamp of the
answers. Later answers are in the test set. We then compare the
result of each algorithm to the difficulty ranking explained above
using NDPM and AP.5 Notice that for NDPM, the lower the score,
the better the ranking, while for AP, better rankings result in higher
scores. For all approaches, we ordered difficulty ranking in de-
creasing order of difficulty (harder questions were ranked higher in
the list).

As can be seen in Figure 2 EduRank is better than all other ap-
proaches on both datasets using both metrics. The results are sta-
5Note that the AP metric is also used to measure similarity between
neighboring students in EduRank. We note that (1) it is standard
practice in ML to use the same metric in the algorithm and the
evaluation, and (2) the AP measure was computed over the training
set in the algorithm, but over the test set in the evaluation.

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 72

(a) AP score (higher is better) (b) NDPM score (lower is better)

Figure 2: Performance Comparison

tistically significant (p < 0.05, paired t-test between EduRank and
the leading competing algorithm).

Looking at the other collaborative filtering methods we can see that
EigenRank and UBCF present comparable performance. This is
not very surprising, because these 2 methods do not take as input a
ranking, but an item score, as we explain above. As the score is only
a proxy to the actual ranking, it is no surprise that these algorithms
do not do as well in predicting the true difficulty ranking.

Of the non-CF methods,TBR does relatively well. Our intuition is
that identifying the student mastery level in topics is an important
factor in establishing the difficulty of a question for that particu-
lar student. It is hence interesting to investigate in future research
how EduRank can also benefit from the information encapsulated
in topics. Nonetheless TBR can be too limiting in practice, because
when a teacher wants to create a practice assignment in a particular
topic, perhaps one that the student has not yet mastered, then TBR
cannot be used to rank questions within that topic.

The method that performed the worst is the content expert ranking
(CER). This is especially interesting as this is the only information
that is currently available to teachers using the K12 e-learning sys-
tem for deciding on the difficulty of questions. There can be two
sources to this sub-optimal performance; First, it may be that it is
too hard, even for experts, to estimate the difficulty of a question
for students. Second, this may be an evidence that personalizing
the order of questions for a particular student is truly important for
this application.

5.5 Case Study
To further demonstrate the behaviour of the various algorithms, we
took one of the students in the K12 dataset and present the results
of the algorithms for that particular student. Table 1 presents a list
of 34 test questions for this student and the rankings that were out-
putted by the different algorithms, in decreasing order of difficulty.
The 15 most difficult questions appear in bold. Each question is de-
noted by (1) its knowledge component (KC) which was determined
by a domain expert (this information was not in the database and
the algorithms did not use it), and (2) the position of the question in
the true difficulty ranking (the gold standard) of the student. This
gold standard was used by the NDPM and AP metrics as a refer-
ence ranking to judge the performance of all algorithms. As shown

in the table, question types involving “multiplication of big num-
bers” and “order of operations” appear prominently in the 15-most
difficulty list, while questions in topics of geometry (“rectangles”,
“polygons”) were easier for the student.

The other columns in the table show the suggested rankings by the
various algorithms. For each algorithm, we present the ranking
location of each question, and the true ranking of this question as
obtained from the gold standard. As can be seen from the results,
for this particular student, the UBCF algorithm performed poorly,
placing many easy questions for the student at high positions in the
ranking (e.g., “Multiply Eq 54” which appears at the top of the list
but is ranked 12th in the gold standard, and “div mod” appears in
4th position in the list and ranked 11th in the gold standard.) The
EigenRank and SVD algorithms demonstrated better results, but
still failed to place the most difficult question for the student (e.g.,
order of operations) at the top of the ranked list. Only the EduRank
algorithm was able to place the questions with “multiplication of
big numbers” and “order of operation” type problems in the top
15 list, providing the best personalized difficulty ranking for this
student.

Table 2 shows the execution time of each algorithm for building
the models and computing the recommended rankings. The dataset
used is the K12 dataset with 918,792 records. Our experiments
were conducted on a Mac Book Air 1.7GHz Intel Core i7 with 8GB
RAM.

Algorithm Run Time (Sec)

CER 197.6
UBCF 445.2
TBR 625.2
EduRank 631.8
EigenRank 795.9
SVD 1490

Table 2: Execution Time

6. RELATED WORK
Our work relates to several areas of research in education and ed-
ucational data mining. Several approaches within the educational

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 73

Gold Standard EduRank Ranking EigenRank Ranking UBCF Ranking SVD Ranking

KC True Rank KC True Rank KC True Rank KC True Rank KC True Rank
Order of Operations, choose options 1 Order of Operations, choose options 1 Order of Operations, Brackets 7 Multuply, Equals 54 12 Multiply, Big Numbers 4
Letters Order 1 Natural Numbers, Verbal Claims 3 Natural numbers, In between 12 Multiply, Choose Between 2 12 Multiply, Bigger than 10
Multiply, Equals 40 2 Add, Sub, Equals 30 10 Div, No Mod, Mod 1 11 Multiply, Bigger than 10 Order of Operations, Brackets 5
Natural Numbers, Verbal Claims 3 Letters Order 1 Div, Div and Mod 11 Div, No Mod, Mod 1 11 Order of Operations, Equals 5 6
Multiply, Big Numbers 4 Add, Sub, Verbal Claims 7 Multiply, Big Numbers 7 Div, No Mod, Mod 2 12 Natural Numbers, Verbal Claims 3
Order of Operations, Brackets 5 Order of Operations, Equals 5 6 Div, Exists? 8 Multiply, Big Numbers 4 Add, Sub, Equals 30 10
Zero, Equals Zero 5 Order of Operations, Brackets 5 Multiply, Equals 40 2 Natural Numbers, Verbal Claims 3 Order of Operations, Brackets 7
Order of Operations, Equals 5 6 Zero, Equals Zero 5 Div, Mod 2 12 Order of Operations, choose options 1 Div, Mod 2 12
Order of Operations, Brackets 7 Multiply, Big Numbers 4 Multuply, Choose between 2 12 Order of Operations, Equals 5 6 Add, Sub, Verbal Claims 7
Add, Sub, Verbal Claims 7 Div, Mod 2 12 Order of Operations, Which is bigger 11 Multiply, Choose between 2 12 Order of Operations, choose options 1
Multiply, Big Numbers 7 Div, No Mod, Mod 2 12 Order of Operations, Brackets 5 Multuply, Choose between 2 12 Multuply, Equals 54 12
Div, Exists? 8 Order of Operations, Brackets 7 Div, Mod 1 11 Order of Operations, Brackets 7 Div, Exists? 12
Substruction 9 Order of Operations, Which is bigger 11 Order of Operations, only %, / 11 Order of Operations, Brackets 5 Div, No Mod, Mod 2 12
Multiply, Bigger than 10 Order of Operations, only %, / 11 Polygon, Parallel sides 10 Letters Order 1 Multiply, Big Numbers 7
Add, Sub, Equals 30 10 Multiply, Big Numbers 7 Letters Order 1 Rectangle, Identify 12 Natural numbers, In between 12
Polygon, Parallel sides 10 Div, Exists? 12 Order of Operations, Equals 5 6 Multiply, Big Numbers 7 Zero, Equals Zero 5
Order of Operations, only +, - 11 Substruction 9 Substruction 9 Polygon, Identify 12 Order of Operations, Which is bigger 11
Order of Operations, only %, / 11 Polygon, Parallel sides 10 Add, Sub, Verbal Claims 7 Zero, Equals Zero 5 Div, Div and Mod 11
Order of Operations, Which is bigger 11 Order of Operations, only +, - 11 Multiply, Big Numbers 4 Order of Operations, only +, - 11 Letters Order 1
Div, Mod 1 11 Div, No Mod, Mod 1 11 Natural Numbers, Verbal Claims 3 Add, Sub, Equals 30 10 Angles, Find Bigger 12
Div, Div and Mod 11 Multiply, Bigger than 10 Add, Sub, Equals 30 10 Polygon, Parallel sides 10 Multiply, Choose between 2 12
Div, No Mod, Mod 1 11 Div, Exists? 8 Order of Operations, choose options 1 Add, Sub, Verbal Claims 7 Div, Mod 1 11
Natural numbers, In between 12 Div, Mod 1 11 Order of Operations, only +, - 11 Div, Mod 1 11 Multuply, Choose between 2 12
Multuply, Equals 54 12 Multiply, Equals 40 2 Zero, Equals Zero 5 Div, Mod 2 12 Div, No Mod, Mod 1 11
Multiply, Choose between 2 12 Div, Div and Mod 11 Div, No Mod, Mod 2 12 Div, Div and Mod 11 Polygon, Parallel sides 10
Multuply, Choose between 2 12 Multuply, Choose between 2 12 Div, Exists? 12 Order of Operations, only %, / 11 Div, Exists? 8
Div, Mod 2 12 Multiply, Choose Between 2 12 Multiply, Bigger than 10 Order of Operations, Which is bigger 11 Order of Operations, only %, / 11
Div, Exists? 12 Rectangle, Identify 12 Multiply, Choose Between 2 12 Div, Exists? 8 Substruction 9
Div, No Mod, Mod 2 12 Polygon, Identify 12 Rectangle, Identify 12 Div, Exists? 12 Order of Operations, only +, - 11
Angles, Find Bigger 12 Multuply, Equals 54 12 Multuply, Equals 54 12 Natural numbers, In between 12 Multiply, Equals 40 2
Angles, Find Bigger 12 Angles, Find Bigger 12 Angles, Find Bigger 12 Substruction 9 Angles, Find Bigger 12
Rectangle, Identify 12 Angles, Find Bigger 12 Angles, Find Bigger 12 Multiply, Equals 40 2 Multiply, Choose Between 2 12
Polygon, Identify 12 Natural numbers, In between 12 Multiply, Choose between 2 12 Angles, Find Bigger 12 Polygon, Identify 12
Multiply, Choose Between 2 12 Multiply, Choose between 2 12 Polygon, Identify 12 Angles, Find Bigger 12 Rectangle, Identify 12

Table 1: Rankings outputted by the different algorithms for a sample target student

data mining community have used computational methods for se-
quencing students’ learning items. Pardos and Heffernan [18] infer
order over questions by predicting students’ skill levels over action
pairs using Bayesian Knowledge Tracing. They show the efficacy
of this approach on a test-set comprising random sequences of three
questions as well as simulated data. This approach explicitly con-
siders each possible order sequence and does not scale to handling
large number of sequences, as in the student ranking problem we
consider in this paper.

Champaign and Cohen [7] suggest a peer-based model for content
sequencing in an intelligent tutor system by computing the similar-
ity between different students and choosing questions that provide
the best benefit for similar students. They measure similarity by
comparing between students’ average performance on past ques-
tions and evaluate their approach on simulated data. Our approach
differs in several ways. First, we don’t use an aggregate measure to
compute similarity but compare between students’ difficulty rank-
ings over questions. In this way we use the entire ranked list for
similarity computation, and do not lose information.6 Second, we
are using social choice to combine similar students’ difficulty rank-
ing over questions. Lastly, we evaluate our approach on two real-
world data sets. Li, Cohen and Koedinger [14] compared a blocked
order approach, in which all problems of one type are completed
before the student is switched to the next problem type to an in-
terleaved approach, where problems from two types are mixed and
showed that the interleaved approach yields more effective learn-
ing. Our own approach generates an order of the different questions
by reasoning about the student performance rather than determin-
ing order a-priori.

Lastly, multiple works have used Bayesian Knowledge Tracing as
a way to infer students’ skill acquisition (i.e., mastery level) over
time given their performance levels on different question sequences

6Consider student1 who has accrued grades 60 and 80 on questions
(a) and (b) respectively; and student2 who has accrued grades 80
and 60 on questions (a) and (b) respectively. The average grade
for both questions will be the same despite that they clearly differ
in difficulty level for the students (when ordered solely based on
grade).

[9]. These works reason about students’ prior knowledge of skills
and also account for slips and guessing on test problems. The mod-
els are trained on large data sets from multiple students using ma-
chine learning algorithms that account for latent variables [3, 10].
We solve a different problem, that of using other students’ perfor-
mance to personalize ranking over test-questions. In addition, these
works measure students’ performance dichotomously (i.e., success
or failure) whereas we reason about additional features such as stu-
dents’ grade and number of attempts to solve the question. We in-
tend to infer students’ skill levels to improve the ranking prediction
in future work.

Collaborative filtering (CF) was previously used in the educational
domain for predicting students’ performance. Toscher and Jahrer
[25] use an ensemble of CF algorithms to predict performance for
items in the KDD 2010 educational challenge. Berger et. al [5] use
a model-based approach for predicting accuracy levels of students’
performance and skill levels on real and simulated data sets. They
also formalize a relationship between CF and Item Response The-
ory methods and demonstrate this relationship empirically. Lastly,
Loll and Pinkwart [16] use CF as a diagnostic tool for knowledge
test questions as well as more exploratory ill-defined tasks.

7. SUMMARY AND FUTURE WORK
This paper presented a novel approach to personalization of educa-
tional content. The suggested algorithm, called EduRank, com-
bines a nearest-neighbor based collaborative filtering framework
with a social choice method for preference ranking. The algorithm
constructs a difficulty ranking over questions for a target student
by aggregating the ranking of similar students. It extends existing
approaches for ranking of user items in two ways. First, by in-
ferring a difficulty ranking directly over the questions for a target
student, rather than ordering them according to predicted perfor-
mance, which is prone to error. Second, by penalizing disagree-
ments between the difficulty rankings of similar students and the
target student more highly for harder questions than for easy ques-
tions.

The algorithm was tested on two large real world data sets and its
performance was compared to a variety of personalization meth-

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 74

ods as well as a non-personalized method that relied on a domain
expert. The results showed that EduRank outperformed existing
state-of-the-art algorithms using two metrics from the information
retrieval literature.

In future work we plan to address the cold start problem by ap-
plying EduRank in a classroom setting in which we will personal-
ize educational content to both exiting and new students. We also
intend to evaluate Edurank’s performance when training on small
datasets and in MOOCs settings where the number of data points
may dramatically change over time.

8. ACKNOWLEDGEMENTS
This work was supported in part by EU grant no. FP7-ICT-2011-9
#600854 and by ISF grant no. 1276/12.

9. REFERENCES
[1] Y. Akbulut and C. S. Cardak. Adaptive educational

hypermedia accommodating learning styles: A content
analysis of publications from 2000 to 2011. Computers &
Education, 58(2):835–842, 2012.

[2] H. Ba-Omar, I. Petrounias, and F. Anwar. A framework for
using web usage mining to personalise e-learning. In
Advanced Learning Technologies, 2007. ICALT 2007.
Seventh IEEE International Conference on, pages 937–938.
IEEE, 2007.

[3] R. S. Baker, A. T. Corbett, and V. Aleven. More accurate
student modeling through contextual estimation of slip and
guess probabilities in bayesian knowledge tracing. In
Intelligent Tutoring Systems, pages 406–415. Springer, 2008.

[4] R. S. Baker, J. Walonoski, N. Heffernan, I. Roll, A. Corbett,
and K. Koedinger. Why students engage in gaming the
system behavior in interactive learning environments.
Journal of Interactive Learning Research, 19(2):185–224,
2008.

[5] Y. Bergner, S. Droschler, G. Kortemeyer, S. Rayyan,
D. Seaton, and D. Pritchard. Model-based collaborative
filtering analysis of student response data: Machine-learning
item response theory. In EDM, pages 95–102, 2012.

[6] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative filtering.
In Proceedings of the Fourteenth conference on Uncertainty
in artificial intelligence, pages 43–52. Morgan Kaufmann
Publishers Inc., 1998.

[7] J. Champaign and R. Cohen. A model for content sequencing
in intelligent tutoring systems based on the ecological
approach and its validation through simulated students. In
FLAIRS Conference, 2010.

[8] A. H. Copeland. A reasonable social welfare function. In
University of Michigan Seminar on Applications of
Mathematics to the social sciences, 1951.

[9] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge. User
modeling and user-adapted interaction, 4(4):253–278, 1994.

[10] M. H. Falakmasir, Z. A. Pardos, G. J. Gordon, and
P. Brusilovsky. A spectral learning approach to knowledge
tracing. In EDM, 2013.

[11] P. C. Fishburn. The theory of social choice, volume 264.
Princeton University Press Princeton, 1973.

[12] E. Kanoulas and J. A. Aslam. Empirical justification of the
gain and discount function for ndcg. In Proceedings of the

18th ACM conference on Information and knowledge
management, pages 611–620. ACM, 2009.

[13] K. R. Koedinger, R. Baker, K. Cunningham, A. Skogsholm,
B. Leber, and J. Stamper. A data repository for the edm
community: The pslc datashop. Handbook of educational
data mining, pages 43–55, 2010.

[14] N. Li, W. W. Cohen, and K. R. Koedinger. Problem order
implications for learning transfer. In Intelligent Tutoring
Systems, pages 185–194. Springer, 2012.

[15] N. N. Liu and Q. Yang. Eigenrank: a ranking-oriented
approach to collaborative filtering. In Proceedings of the 31st
annual international ACM SIGIR conference on Research
and development in information retrieval, pages 83–90.
ACM, 2008.

[16] F. Loll and N. Pinkwart. Using collaborative filtering
algorithms as elearning tools. In 42nd Hawaii International
Conference on Systems Science, 2009.

[17] H. Nurmi. Voting procedures: a summary analysis. British
Journal of Political Science, 13(02):181–208, 1983.

[18] Z. A. Pardos and N. T. Heffernan. Determining the
significance of item order in randomized problem sets. In
EDM, 2009.

[19] D. M. Pennock, E. Horvitz, C. L. Giles, et al. Social choice
theory and recommender systems: Analysis of the axiomatic
foundations of collaborative filtering. In AAAI/IAAI, pages
729–734, 2000.

[20] D. Sampson and C. Karagiannidis. Personalised learning:
Educational, technological and standardisation perspective.
Interactive Educational Multimedia, 4:24–39, 2002.

[21] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application
of dimensionality reduction in recommender system-a case
study. Technical report, DTIC Document, 2000.

[22] F. Schalekamp and A. van Zuylen. Rank aggregation:
Together we’re strong. In ALENEX, pages 38–51, 2009.

[23] S. Schelter and S. Owen. Collaborative filtering with apache
mahout. Proc. of ACM RecSys Challenge, 2012.

[24] G. Shani and A. Gunawardana. Evaluating recommendation
systems. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,
editors, Recommender Systems Handbook, pages 257–297.
Springer US, 2011.

[25] A. Toscher and M. Jahrer. Collaborative filtering applied to
educational data mining. KDD Cup, 2010.

[26] Y. Yao. Measuring retrieval effectiveness based on user
preference of documents. JASIS, 46(2):133–145, 1995.

[27] E. Yilmaz, J. A. Aslam, and S. Robertson. A new rank
correlation coefficient for information retrieval. In
Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information
retrieval, pages 587–594. ACM, 2008.

[28] L. Zhang, X. Liu, and X. Liu. Personalized instructing
recommendation system based on web mining. In Young
Computer Scientists, 2008. ICYCS 2008. The 9th
International Conference for, pages 2517–2521. IEEE, 2008.

[29] B. Zhou and Y. Yao. Evaluating information retrieval system
performance based on user preference. Journal of Intelligent
Information Systems, 34(3):227–248, 2010.

[30] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale
parallel collaborative filtering for the netflix prize. In
Algorithmic Aspects in Information and Management, pages
337–348. Springer, 2008.

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 75

	9-edm2014_submission_3

