
Interpreting Model Discovery and  
Testing Generalization to a New Dataset 

Ran Liu 
Psychology Department 

Carnegie Mellon University 
ranliu@cmu.edu 

Kenneth R. Koedinger 
Human-Computer Interaction Institute 

Carnegie Mellon University 
koedinger@cmu.edu 

Elizabeth A. McLaughlin 
Human-Computer Interaction Institute 

Carnegie Mellon University 
mimim@cs.cmu.edu 

 
ABSTRACT 
 

Automated techniques have proven useful for improving models 
of student learning even beyond the best human-generated 
models. There has been concern among the EDM community 
about whether small prediction improvements matter. We argue 
that they can be quite significant when they are interpretable and 
actionable, but the importance of generating meaningful, 
validated, and generalizable interpretations from machine-model 
discoveries has been under-emphasized in educational data 
mining. Here, we interpret a Learning Factors Analysis model 
discovery from a geometry dataset to suggest that students 
experienced difficulty applying the square root operation in circle-
area backward problem steps. We then sought to validate and 
generalize this interpretation in the context of a completely novel 
dataset. Results indicated that our interpretation of the small, 
automated prediction improvement not only held up in the context 
of a novel dataset but also generalized to new types of problems 
that didn’t exist in the original dataset. We argue that identifying 
cognitive interpretations of automated model discoveries and 
assessing the generalizability of such interpretations are critical to 
translating those model discoveries to concrete improvements in 
instructional design.   
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Cognitive model discovery, model interpretation, generalization 
across datasets, learning factors analysis. 

1. INTRODUCTION 
 

Much Educational Data Mining (EDM) has focused on new data 
mining methods for improving within-dataset predictions. There 
has been interest in the community concerning whether small 
prediction improvements matter. Although we cannot provide a 
firm answer, we argue that they do when the improvements are 
interpretable and actionable. We have shown, in past experimental 
results, that genuine learning improvements can result from 
automated discoveries of small prediction differences [16]. 
Further, we argue that there should be more emphasis in EDM on 
whether predictions are clearly interpretable from a theoretical or 
cognitive perspective and whether the interpretation has external 
validity (e.g. generalizes beyond the dataset in which it was 
discovered). 

Here, we present one of the first attempts at taking an 
interpretation of an automated cognitive model (or Q matrix [1, 8, 
19]) discovery and generalizing that interpretation to a novel 
dataset, different from the one used to make the discovery. We 
focused on a discovery by the Learning Factors Analysis (LFA) 
algorithm [4] from a geometry dataset that improved predictions 
beyond the best available human-generated cognitive model. Even 
though the prediction improvement was small within this original 

dataset, with the addition of some exploratory data analysis, we 
interpreted the discovery within the context of a cognitive skill 
model [15]. 

Our intention was not to apply the improved model directly to 
new data (e.g., as in [11]) nor to run an exact replication of the 
study but, rather, to test whether the interpretation itself held up 
within the context of a new dataset with direct relevance to the 
interpretation but whose structure and properties may differ from 
those of the original dataset. 

2. BACKGROUND 
 

Cognitive models are an important basis for the instructional 
design of automated tutors and are important for accurate 
assessment of learning. Improvements to cognitive models, when 
combined with an appropriate theoretical interpretation, can yield 
better instruction and improved learning. More accurate skill 
diagnosis leads to better predictions of what a student knows, thus 
resulting in improved assessment and more efficient learning 
overall. Cognitive Task Analysis [5, 6, 17] is currently the best 
strategy for creating cognitive models of learning, but the method 
has its limitations. For example, it involves many subjective 
decisions and requires large amounts of human time and effort, as 
well as a high level of psychological expertise. 

Educational data mining and machine learning techniques can be 
used to improve cognitive models in an automated fashion. These 
methods involve using data and statistical inference to create or 
modify a cognitive model involving continuous parameters over 
latent variables that can be linked to observed student 
performance variables. In addition to saving time and effort, 
machine models have the potential to discover cognitive model 
improvements that may not otherwise be considered via human-
generated methods. 

In order to use techniques of automated cognitive model 
improvement effectively towards the primary goal of bettering 
instructional design and assessment, it is important to properly 
interpret machine discoveries in the context of a cognitive skill 
model. Furthermore, it is critical to demonstrate the external 
validity of the interpretation beyond the dataset from which the 
discoveries were made. There exist good techniques (e.g., various 
methods of cross-validation) for ensuring internal validity of 
automated discoveries, but there have been few demonstrations of 
generalization beyond the samples in which discoveries are made. 
Here, we discuss an example of an automated model discovery 
that improved a Knowledge Component (KC) Model, a specific 
type of cognitive skill model, beyond the best existing human-
generated model. Knowledge Components represent units of 
knowledge, concepts, or skills that students need to solve 
problems. A KC Model is composed of a set of KCs mapped to a 
set of instructional tasks (e.g. problem steps).  The LFA algorithm 
[4] automates the search process across hypothesized knowledge 
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components (KCs) across a number of possible models. A tool 
such as the LFA algorithm not only reduces human effort and 
error by providing an automated method for discovering and 
evaluating cognitive models, but it outputs a most predictive Q 
matrix [19], thus producing a statistical version of a symbolic 
model. As such, LFA eases the burden of interpretation, but it 
does not in itself accomplish interpretation. 

We applied the LFA search process across 11 datasets using 
different domains and technologies (available from DataShop at 
http://pslcdatashop.org; [13]). This automated process improved 
models, by cross-validation measures, across all of the datasets 
beyond the best manual models available [15]. However, the 
improvements in root mean square error (RMSE) were quite 
small. We questioned whether such miniscule changes in 
measurement are interpretable, generalizable, and—most 
importantly—actionable. 

To investigate these questions, we focused on a particular dataset 
called Geometry Area 1996-1997, which is available to the public, 
has been analyzed for several other studies and shown to be 
reliable, and has produced findings we can test for generalization 
[12]. These data included 5,104 student steps completed by 59 
students. Within this dataset, we compared the best LFA-
discovered model (according to item-stratified cross validation) 
against two human generated models—the original model and the 
best hand-generated model (according to item-stratified cross 
validation). The LFA algorithm split circle-area problem steps 
into those that use a forward strategy (find area, given radius) and 
those that use a backward strategy (find radius, given area). It did 
not split any other area formulas for the backward-forward 
distinction. Thus, LFA essentially discovered an unforeseen 
“new” knowledge component (i.e., circle-area backward) for this 
dataset. As mentioned, the cross-validation results provided 
evidence of the internal validity of the discovered cognitive model 
improvement. 

In the current paper, we aim to assess the external validity of this 
result in a novel dataset whose structure and properties are 
different from the original dataset in which the discovery was 

made. Since it was not possible to test the original LFA-
discovered model directly on a new dataset due to its differing 
structure and problem types, it was critical that we generated a 
cognitive interpretation of the finding. The interpretation makes it 
possible to generate predictions and models that are appropriate to 
the novel dataset in which we aim to test the validity and 
generalization of our findings. 

3. INTERPRETING MACHINE-DRIVEN 
MODEL IMPROVEMENTS 
 

The LFA discovery within the Geometry Area 1996-1997 dataset 
yielded a result that we interpreted by combining information 
from the algorithm split and other relevant exploratory measures 
from the dataset itself. Analysis of the automated model revealed 
a forward-backward split only predictive for circle area (i.e., not 
for the other geometric shapes in the dataset nor for other circle 
formulas such as find diameter or radius given circumference). 
Data on student performance corroborated this finding. Circle-
area backward problems were substantially more difficult for 
students than circle-area forward problems (54% vs. 80%), but 
performance on the other shapes exhibited small or negligible 
differences in forward vs. backward steps (Figure 1a). The circle-
area split illustrates an important factor discovered by the LFA 
algorithm that had not been anticipated by human analysts. 

Delving into the problem steps associated with circle-area 
backward computations revealed the necessity of a square root 
operation (r = √ (A/π)) that was not a requirement in any of the 
other backward formulas. Given the unique feature of square root 
operation in the context of this dataset and the absence of a 
forward-backward model split or performance discrepancy on all 
other shapes’ area calculations and all other circle formula 
calculations, we hypothesized that the automated model 
improvement was more about the difficulty knowing when and 
how to apply a square root operation than about the difficulty 
applying a backward strategy more generally. 

Although data mining techniques helped discover the split, it took 
 

	
  

Figure 1. Average proportion correct on first attempts at geometry area problem steps, grouped by shape and color-coded based on 
whether the problem step requires a forward strategy, a backward strategy that requires a square root calculation, or a backward strategy 
that does not require a square root calculation. Panel (a) reflects the Geometry Area 1996-1997 dataset, where LFA discovered that 
merging forward and backward for all shapes but circle yielded the best predictions. Our interpretation was that this split reflected a 
difficulty applying (or knowing to apply) the square root, which only affects the circle-area backward computations. Based on this 
interpretation, we predicted a split between forward and backward problem steps for circles and squares but not other shapes. Panel (b) 
shows that performance in the Motivation for Learning HS Geometry 2012 dataset confirms this predicted split.	
  

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 108



a rational cognitive analysis to identify an underlying cognitive 
process (e.g., square root operation) from the information 
obtained via the LFA output. To move from data analysis to data 
interpretation requires domain knowledge and cognitive 
psychology expertise beyond just methodological skills in EDM 
techniques. 

4. VALIDATING AND GENERALIZING 
THE INTERPRETATION 
 

Before using interpretations from machine-model discoveries to 
redesign instructional principles, it is often important to assess the 
external validity of the interpretations themselves. For example, 
the tutor unit for the Geometry Area 1996-1997 dataset had only 
three unique problem steps associated with the circle-area 
backward (i.e., find circle radius given area) calculation. 
Furthermore, it had no problem steps associated with a square-
area backward (i.e., find square side length given area) 
calculation. Due to the limited task variety available in the 
Geometry Area 1996-1997 dataset, it remains unclear from that 
dataset alone whether our interpretation of difficulty applying the 
square root operation will generalize to data containing a broader 
set of tasks. 

Thus, we sought to validate this interpretation of a machine-driven 
cognitive model discovery in an independent dataset containing 
substantially more circle-area backward problem steps as well as 
the existence of square-area backward problem steps, which were 
entirely absent from the original dataset.  To this end, we 
investigated the geometry portion of a much more recent dataset, 
Motivation for Learning HS Geometry 2012 (geo-pa) [3]. This 
dataset is an excerpt from regular classroom use of a Geometry 
Cognitive Tutor [18] by 82 HS students (10th graders) with a total 
of 72,404 student steps. It contains similar types of shape-area 
modules and questions as the original dataset but has many more 
(49) unique circle-area backward problem steps. It also contains 
many (57) unique square-area backward problem steps.  This 
makes it possible to validate (i.e. by investigating circle-area and 
other shape-area forward and backward performance) and 
generalize (i.e. by investigating square-area forward and 
backward performance) our interpretation of the original LFA-
based discovery. 

A first-pass exploratory analysis of the 2012 dataset reveals a 
substantially higher proportion of correct first attempts at forward, 
compared to backward, circle- and square-area problem steps 
(Figure 1b).  In order to validate the specificity of the square root 
operation interpretation, we also investigated performance on 
backward vs. forward steps for all other shapes’ area formulas. 
These data confirm that the performance differences between 
forward and backward area KCs are substantially smaller for the 
other shapes that don’t require a square root operation in their 
backward steps (parallelogram backward=81%, forward=85%; 
rectangle backward=77%1, forward=86%; trapezoid 
backward=72%, forward=73%; triangle backward=72%, 
forward=73%). 

Beyond these performance data, we compared the performance of 
a KC model that aligns with our square root interpretation against 
KC models representing alternative hypotheses.  Our hypothesis-

                                                                    
1 Adjusted value reflecting the omission of 7 problem steps for 

which there was an error in the problem text. The pre-
adjustment value is 0.70. 

driven KC model distinguishes backward-area steps from 
forward-area steps for circles and squares (since the backward 
steps require a square root operation) but does not make this 
forward-backward distinction for any other shapes.  We compared 
this to a KC model that makes no forward-backward distinctions 
for any shapes (merges F-B across all shapes) as well as a KC 
model that makes all forward-backward distinctions for all shapes.  

Since this dataset contained both circle-area and square-area 
problems, we also asked whether there might have been transfer 
between circle- and square-area backward problem steps on the 
basis that both require application of the square root operation.  If 
there were full transfer, we would expect that a KC model 
merging square- and circle-area backward steps into a single skill 
should outperform a KC model that distinguishes square- from 
circle-area backward steps. To test this question of transfer, we 
created the former KC model and included it in our model 
comparison. 

We compared performance across these four hypothesis-driven 
single-skilled2 KC models: 

1. SQRT SKILL CIR-SQ DISTINCT (58 KCs):  Forward-
backward steps coded as distinct for circle and square area 
problems; forward-backward steps merged (into a single 
“area” KC) for each of the other shapes. This KC model is 
structured based on our interpretation that backward steps 
requiring a square root operation should be coded as separate 
skills. 

2. ALL SHAPES F-B MERGED (56 KCs):  No forward-
backward distinction for any shapes’ areas (a single “area” 
KC is coded for each shape).  This KC model is analogous to 
the original hand model for the Geometry Area 1996-1997 
dataset from which LFA discovered the circle forward-
backward area split on. 

3. ALL SHAPES F-B DISTINCT (66 KCs):  Forward-
backward steps are coded as distinct3 for all shapes’ area 
problems. The comparison of our interpretation-based model 
(SQRT SKILL CIR-SQ DISTINCT) against this one is 
important for establishing the specificity of a square root 
operation hypothesis and rules out the possibility that the 
best split should, more generally, be forward vs. backward 
area steps across all shapes. 

4. SQRT SKILL CIR-SQ BACKWARD (57 KCs):  Forward 
steps coded as distinct for circle and square area problems; 
backward circle- and square-area steps merged into a single 
skill; forward-backward steps merged (into a single “area” 
KC) for each of the other shapes.  The comparison of our 
interpretation-based model (SQRT SKILL CIR-SQ 
DISTINCT) against this one will inform us as to whether 
there was full transfer between backward circle- and square-
area skills. 

                                                                    
2 The original KC model from which we constructed these four 

single-skilled models was a multi-skilled model. To convert the 
multi-skilled into a single-skilled model, we selected single 
skills corresponding with the LFA results on the Geometry Area 
1996-1997 dataset. 

3 This model codes forward vs. backward steps with the finest-
grain distinction possible: some shapes have multiple backward 
steps that are coded as distinct from each other (e.g., for 
parallelograms, “find height given area” and “find base given 
area” are coded as separate KCs). 
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The models were evaluated using Akaike Information Criterion 
(AIC), Bayesian Information Criterion (BIC), and 10-fold cross 
validation (CV). Due to the random nature of the folding process 
in cross validation, we repeated each type of 10-fold CV (item-
stratified and student-stratified) 20 times and calculated the 
RMSE on each run, as has been done in previous work to handle 
this variabiltiy in CV [16]. 

In Table 1, we report the average root mean-square error (RMSE) 
values across 20 runs each of 10-fold item-stratified and 10-fold 
student-stratified CV. The SQRT SKILL: CIR-SQ DISTINCT 
model performs best, on average, by both item-stratified and 
student-stratified CV measures. 

To ensure that it performed better than the next best model (ALL 
SHAPES: F-B DISTINCT) consistently, as opposed to by chance 
(due to random selection of folds), we compared the RMSEs from 
the 20 runs of item-stratified CV and student-stratified CV 
between the two models using a paired t-test. For item-stratified 
CV, the SQRT SKILL: CIR-SQ DISTINCT model had 
consistently lower RMSEs than the ALL SHAPES: F-B 
DISTINCT model across every one of the 20 runs, and this pattern 
was significant based on a paired t-test (t = -10.249, df = 19, p < 
0.0001). For student-stratified CV, the SQRT SKILL: CIR-SQ 
DISTINCT model had lower RMSEs than the ALL SHAPES: F-B 
DISTINCT model on 14 of 20 runs, which was not statistically 
significant by a paired t-test. 

Consistent with our previous work comparing machine-discovered 
models to baseline models [15], we focus on item-stratified cross 
validation as the primary metric, because we are concerned with 
improving cognitive tutors. Item stratified cross validation 
corresponds most closely with a key tutor decision of selecting the 
next problem type. Furthermore, the BIC measure concurs with 
the item-stratified cross validation results in suggesting that the 
SQRT SKILL CIR-SQ DISTINCT model is the best-performing 
model. 

The superior performance of SQRT SKILL CIR-SQ DISTINCT 
over ALL SHAPES F-B MERGED (on all measures) supports 
and extends the original LFA finding that splitting F-B on circles 

and squares is better than leaving F-B merged.  Notably, SQRT 
SKILL CIR-SQ DISTINCT even performs better, by item-
stratified CV and BIC measures, than the ALL SHAPES F-B 
DISTINCT, the KC model that contains the same F-B distinctions 
for circle and square but even more fine-grained distinctions in the 
form of F-B separation for other shapes. This validates the 
specificity of the square root operation hypothesis and rules out 
the possibility that the major split should be for general forward 
vs. backward strategies among all shapes’ area problems. 

Thus, there is good evidence from KC model comparisons that 
distinguishing forward from backward steps specifically for 
circle- and square-area problems but not other shape-area 
problems predicts student learning best. This validates and 
generalizes our original interpretation that knowing when and how 
to apply the square root operation is the basis for the cognitive 
model improvements. 

We did not observe full skill transfer between backward circle- 
and square-area steps, since the SQRT SKILL CIR-SQ 
BACKWARD model performed consistently worse than the 
SQRT SKILL CIR-SQ DISTINCT model by all measures. To 
investigate whether this may have been due to a lack of variability 
in the order that students complete circle-area backward vs. 
square-area problem steps, we examined the relative ordering of 
the two shapes’ backward area steps. We discovered that each 
individual student completed all square-area backward steps 
before any circle-area backward steps. These data show a lack of 
variability in the relative ordering of the opportunities for the two 
shapes’ backward-area practice, which suggest the combined 
model may only reflect partial transfer. This interpretation is 
supported by the observation that the end of the square-area 
backward learning curve (Figure 2, middle panel) does not align 
well with the beginning of the circle-area backward learning 
curve; rather, there is an increase in error rate (computed by 
taking the inverse logit of model values) from the end of square-
area backward (22.2%) to the start of circle-area backward 
(47.3%). 

We investigated learning curve prediction improvements yielded 
by our hypothesis-driven models (SQRT SKILL CIR-SQ 

 

Model Name	
   KCs	
   AIC	
   BIC	
  
RMSE: Item-Stratified 
Cross Validation	
  
(Average of 20 runs)	
  

RMSE: Student-Stratified 
Cross Validation 
(Average of 20 runs)	
  

ALL SHAPES: F-B MERGED	
   56	
   20,992	
   22,652	
   0.28208	
   0.28702	
  

ALL SHAPES: F-B DISTINCT	
   66	
   20,839	
   22,670	
   0.28104	
   0.28588	
  

SQRT SKILL: CIR-SQ DISTINCT	
   58	
   20,857	
   22,551	
   0.28087*	
   0.28584	
  

SQRT SKILL: CIR-SQ 
BACKWARD	
   57	
   20,883	
   22,560	
   0.28113	
   0.28621	
  

Table 1. Comparison between prediction accuracies of the four hypothesis-driven KC models, evaluated using AIC, BIC, and both item-
stratified and student-stratified 10-fold cross validation (CV). Cross validation results are reported as the average root mean-square error 
(RMSE) values across twenty runs of 10-fold CV. The best performing model, by each of the measures, is bolded. *Significant at the 
p<0.001 level in t-tests comparing model performance against all other models, except the one italics entry, over the twenty runs of cross 
validation.	
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DISTINCT and SQRT SKILL CIR-SQ BACKWARDS) 
compared to the baseline KC model (ALL SHAPES F-B 
MERGED). Figure 2 shows these learning curve predictions as 
well as their AFM model values (logit and slope). Our hypothesis-
driven KC models, both of which consistently performed better 
than the baseline KC model, exhibit higher learning slope values.  
This finding is consistent with our general LFA results [15] that 
showed that models with better prediction results had higher 
learning slope values. 

5. RELATED WORK 
 

Beck & Xiong [2] rightfully raised concerns about the fact that 
many promising modeling approaches have produced only 
“negligible gains in accuracy, with differences in the thousandths 
place on RMSE.”  That paper focused on differences in statistical 
modeling approaches, such as Bayesian Knowledge Tracing and 
Performance Factors Assessment, whereas our focus is on 
cognitive model improvements. Beck & Xiong do make a similar 
comment about how cognitive model (they use the phrase 
“transfer model”) modifications produce only “slight 
improvement in accuracy”. In our case, we argue that even slight 
improvements can yield meaningful and valid interpretations that 
generalize to new contexts within the same domain and can be 
used to produce significant differences in student learning. 

We completely agree with Beck & Xiong’s suggestion that 
“higher predictive accuracy is not sufficient” and with their 
emphasis on interpretability, “is there any interpretable 
component relating to student knowledge?”  We share a desire to 
connect results to student learning and address questions like “can 
we use this model to predict whether an intervention will lead to 
more learning?” However, we emphasize using interpretation of 
models not only to predict the impact of an intervention, but also 
as a guide to design such interventions. As we discuss below, 
cognitive model improvements, even ones with small impact on 
prediction accuracy, can be used to guide new instructional 
designs and high plausibility for impact in improving student 
learning.  We need to “close the loop” and test whether designs 
based on cognitive model insights do improve learning, as has 
been done in past experiments [14, 16]. 

Learning Factors Analysis (LFA) requires human intervention to 
propose factors that may (or may not) account for task difficulty 
or transfer of learning from one task to another (e.g., backward 
application of a formula). This human intervention can be 
considered a downside of LFA relative to other cognitive model 
or q-matrix discovery algorithms [e.g., 1, 7-9, 19] that 
automatically produce new factors (e.g., as clusters of tasks with 
similar factor loadings). The results of these models, however, 
must be interpreted and post-hoc factor labeling is, in our 
experience, extremely difficult.  It is quite hard to make sense of 
discovered factors or the task clusters they imply.  We suspect that 
such interpretation difficulty is the reason that, to our knowledge, 
none of these methods have been used to produce new cognitive 
model explanations of task difficulty or transfer.  More 
importantly, to our knowledge, none of them have been used to 
redesign instruction that can be tested in close-the-loop 
experiments.  Thus, while LFA does require upfront human 
intervention to propose factors, this upfront investment appears to 
pay off in that LFA output affords more effective interpretation of 
model results on the backend. 

At the other extreme, traditional methods of Cognitive Task 
Analysis such as structured interviews of experts [5, 6, 17] or 
think alouds [10] puts great emphasis on logical interpretation.  
They draw on qualitative data and are quite time-consuming or 
expensive to implement.  LFA offers a quantitative alternative that 
may be easier to implement. 

Other work besides ours has tested models produced using one 
dataset on another.  For example, it was demonstrated that the 
structure and parameterization of a model using ASSISTment 
(www.assistments.org) system interaction data to predict state test 
scores in one year also works well in predicting state test scores 
from data in another year [11].  Here, we focused on transferring 
not only the specific structure of the model (e.g., the Q-matrix) 
but the cognitive insights from interpreting the model.  The latter 
allowed us to make predictions on a kind of task (i.e., square-area 
backward) that was not even present in the original data or in the 
original Q-matrix. Making predictions of student performance on 
unseen tasks is something that a purely statistical model cannot 
do. We need to extend such models with logical or structural 
interpretations that have both explanatory power (i.e., they help us 

	
  

Figure 2.  Learning curve prediction improvements (from the new 2012 dataset) yielded by comparing the square root KC models 
(middle and right panels) based on our interpretation of the LFA discovery against one that reflects what the KC model would have been 
(ALL-SHAPES: F-B MERGED, left panel) without the LFA discovery/interpretation. The x-axis reflects the opportunity number.  Each 
data point was required to have at least 10 observations. The interpretation-based KC models that yielded better prediction results also 
exhibited higher learning slope values (bottom number to the right of each graph). This finding is consistent with what we observed 
using the LFA-discovered model in the original dataset. 
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make sense of student learning) and generative power (i.e., they 
guide the design of better instruction). 

6. CONCLUSIONS & FUTURE 
DIRECTIONS 
 

Although the reduction in overall error (RMSE) was rather small 
in the original LFA model discovery on dataset Geometry Area 
1996-1997, we demonstrated that the theoretical interpretation of 
this discovery was not only validated in an independent dataset 
but also generalized to new problem types that were not part of 
the original dataset (i.e., square-area backward).  Error reductions 
can be small as a consequence of most of the model being 
essentially the same as the original but can still indicate a few 
isolated changes that are highly practically significant for tutor 
redesign.  In a recent close-the-loop study [16], we demonstrated 
how using a cognitive model discovery to redesign a tutor unit led 
to both much more efficient and more effective learning than the 
original tutor. In that case, the discovered model had a statistically 
significantly lower RMSE on item-stratified cross validation 
(0.403) than the existing human-created model (0.406).  The 
actionable interpretation of this small difference, only 0.003 in 
RMSE, was demonstrated to be practically important. 

Some other automated techniques discover models that are 
difficult or impossible to understand (e.g., matrix factorization [7, 
9]), either toward deriving insights into student learning or 
making practical improvements in instruction. The output of LFA 
is more interpretable and convertible to tutor changes than these 
alternative methods that may produce latent variable 
representations without the consistent application of human-
derived codes or without code labels at all. 

Here, we aimed specifically to assess the generalizability of our 
cognitive interpretation of an LFA model discovery. We showed 
that our interpretation held up within the context of a new dataset 
with domain relevance but whose structure and properties differed 
from those of the original dataset. Validation and generalization 
were confirmed, in the 2012 geometry dataset, based on (1) 
performance measures and (2) superior prediction of learning by a 
KC model constructed based specifically on our interpretation. 

These findings move beyond simply replicating the original LFA 
model discovery.  Since the novel dataset had a different structure 
from the original dataset, including differences relevant to our 
interpretation (i.e., existence of square-area backward problem 
steps), it would not have been viable to directly test the discovered 
automated model on this new dataset. Thus, the interpretation of 
automated model discoveries is actually necessary in order to test 
the generalizability of such discoveries across contexts with non-
identical structures. Furthermore, interpretations help anchor all 
subsequent data exploration and analyses to something 
meaningful that can then be translated into concrete improvements 
to instructional design. 

Testing the generalization of our interpretation not only confirmed 
the robustness of the idea but also yielded further details about the 
scope of the interpretation that have relevant implications for 
modifying instruction.  For example, the original automated 
discovery may have suggested that we should treat circle-area 
backward problems as a separate skill, but the generalization of 
our interpretation suggests we should treat all backward area 
problems involving application of the square root operation—
including square area—as distinct from their forward area 
counterparts. 

Further, the demonstrated validity of our interpretation has 
potential implications for instructional design beyond the 
cognitive tutors used to generate the datasets we worked with 
here. For example, the Khan Academy (www.khanacademy.org) 
geometry area units treat all circle-area problems as one skill and 
all square-area problems as one skill, with no forward-backward 
distinction, in their practice sets. Our findings suggest, at the very 
least, that it may be worth investigating whether our discovered 
interpretation also generalizes to student performance in very 
different instructional contexts such as that in the Khan Academy. 
If so, it would suggest potential instructional improvements there 
as well. 

By isolating improvement in an interpretable component of 
student learning, elements of instructional design can be modified 
to more efficiently address student learning. An improved 
cognitive model can be used in multiple possible ways to redesign 
a tutor [16]. These include resequencing (positioning problems 
requiring fewer KCs before ones needing more), knowledge 
tracing (adding or deleting skill bars), creating new tasks, and 
adding/changing feedback or hint messages.  

From the cognitive model improvement demonstrated here, we 
suggest adding new skills to the tutor that differentiate backward 
circle- and square-area problem steps from their forward 
counterparts. For other shapes, in contrast, we suggest that the 
skills for forward and backward area problem steps be merged. 
These skill bar changes would lead to changes in knowledge 
tracing as well as the creation of new tasks. In particular, students 
would receive increased practice on circle-area and square-area 
backward problems and decreased practice on some forward and 
backward steps for other shapes’ area formulas. Finally, we 
suggest that new tasks or hint messages might be added to the 
backward circle- and square-area practice problems. For example, 
we might include additional questions, or hints, that simply ask 
“What do you need to do to 50 in x^2 = 50 to find the value of x?”  
We expect that the combination of increased practice on newly 
discovered skill difficulties and new tasks/hints that scaffold the 
difficulty would significantly improve overall student learning. In 
future work, we aim to “close the loop” on this finding by 
implementing these suggested instructional design changes and 
testing whether a redesigned tutor yields improvements in student 
learning above those achieved by the current tutor.  

More generally, this work contributes to a broader set of evidence 
that a deep understanding of the cognitive processes of a domain 
through Cognitive Task Analysis (CTA) can lead to instructional 
designs that produce much better learning than typical instruction 
created through the self-reflections of a domain expert [5, 6, 17].  
Prior work on CTA involves time-consuming expert interviews 
and subjective qualitative analysis.  We find great promise in 
using data mining as a form of quantitative CTA that can more 
automatically and efficiently produce actionable discoveries.  
Nevertheless, the analysis process still involves human expertise 
in cognitive science to interpret model output and hypothesize 
cognitive interpretations that can be used to generalize across 
datasets and make effective instructional design decisions. 
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