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ABSTRACT 

In this paper, we use sensor-free affect detection [4] and a 

discovery with models approach to explore the relationship 

between affect occurring over varying durations and learning 

outcomes among students using Cognitive Tutor Algebra. 

Researchers have suggested that the affective state of confusion 

can have positive effects on learning as long as students are able 

to resolve their confusion [10, 22], and recent research seems to 

accord with this hypothesis [17]. However, there is some room for 

concern that some of this earlier work may have conflated 

frustration and confusion. We replicate these analyses using 

sensor-free automated detectors trained to distinguish these two 

affective states. Our analyses suggest that the effect may be 

stronger for frustration than confusion, but is strongest when these 

two affective states are taken together. Implications for these 

findings, including the role of confusion and frustration in online 

learning, are discussed. 
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1. INTRODUCTION 
Affect has become an area of considerable interest within research 

on interactive learning environments [1, 10, 11, 18, 23]. Though 

findings relating boredom and engaged concentration to learning 

have largely accorded to prior hypotheses, there have been 

surprising patterns of results for other affective states, with 

unstable effects for confusion between studies and often no effects 

for frustration [7, 21]. 

However, many of these early studies investigated overall 

proportions of affective states, rather than considering the 

potential differential impacts of affect manifesting in different 

ways. It may be important to consider the multiple ways a specific 

affective state can manifest, especially considering that there can 

be considerable variance in how long an affective state lasts [8], 

affect may be influenced by behavior and vice-versa [3, 5] and 

some affective states may not be unitary in nature (for example, 

[12] refers to “pleasurable frustration,” which is presumably 

different in nature than the non-pleasurable frustration often 

discussed in the research literature). 

This puzzle is of particular interest for the affective state referred 

to as confusion. While relationships between boredom and 

learning, and engaged concentration and learning, often follow 

hypothesized patterns [7, 21], confusion appears to manifest in 

unstable ways across studies. For example, while [7] and [9] find 

a positive relationship between confusion and learning, with an 

experimental intervention in the case of [9], [21] finds a negative 

relationship. Frustration, somewhat surprisingly, routinely does 

not appear to be correlated with differences in learning outcomes 

[7, 21]. 

One possibility is that these results — particularly the results for 

confusion — may be based on insufficient information.  That is, 

the overall prevalence of an affective state may not accurately 

predict its impact; how it manifests matters. As [22] notes, 

students who become confused may either deliberate until they 

resolve their confusion or become hopelessly “stuck” in 

unresolved confusion; the former situation has been hypothesized 

to help learning while the latter undercuts student achievement 

[22]. As such, the duration of a student’s state of confusion may 

be meaningful. Under this hypothesis, the longer a student 

remains confused, the less likely they are to resolve that confusion 

[22]. [10] suggests that confusion may have a dual nature when 

considered as an affective state: it is possible for it to trigger either 

persistence (engagement) or resistance to the learning process. 

These hypotheses were investigated in Lee et al. [17], who 

analyzed students’ affect over time as the students learned 

introductory computer programming. Lee and colleagues broke 

down students’ compilation behaviors within this context into 

sequences of 8 compilations within the learning software, and 

used text replays [2] to label student behavior in terms of whether 

the student was thought to be confused. They then developed a 

data-mined model based on these labels, and distilled its outputs 

into sequences of two or three consecutive affective states 

(confused or not confused). They then correlated each student’s 

proportion of these sequences with the student’s mid-term exam 

scores. This test was given after the learning activity studied. 

Lee et al. found evidence that short-term confusion that resolves 

seems to impact learning positively, whereas prolonged confusion 

affects learning negatively [17]. They found a fairly strong 

negative relationship between prolonged confusion (three 

measurements of confusion in a row) and learning (r=-0.337), 

while students who had brief periods of confusion followed by 

extended periods where the student was not confused had more 

positive learning (r=.233). 

The results in [17] are intriguing, and show the benefits of this 

type of fine-grained analysis. However, there are some limitations 

to this study that may reduce confidence in its findings and 

therefore call for replication and clarification. (These limitations 

 

 



were pointed out by the anonymous reviewers at the time of 

submission of [17]). One key potential limitation was that the 

operational definition of confusion used in [17] differs 

substantially from that used in prior research on affect and 

learning [3, 7, 21]. In [17], clips were coded as confused based on 

extended student difficulty, for example when a student failed to 

resolve an error on several consecutive programming 

compilations. It is not clear that these inferences capture 

confusion in the same sense that is traditionally described in the 

affect literature. In particular, this behavior and other aspects of 

the operational definition of confusion in [17] may have 

incorporated instances of frustration as well as confusion.  This 

potential limitation was due to the approach used to label 

confusion; the human coders in [17] inferred and hand-labeled 

affect solely from a fairly limited subset of the information 

available in log files, as opposed to the field observations or video 

observations used in other work, each of which leverage more 

information to discriminate affect. While the text replay method 

has been shown to be reliable for inferring behaviors [2, 24], its 

use in affect labeling is relatively more experimental and may be 

more open to question. 

Another limitation in this early work is that the measure of 

learning used (a mid-term exam) was not grounded in any 

measure of students’ knowledge prior to the learning activity. As 

such, this work assumes that specific affective patterns led to 

student success, but it is equally possible that student prior 

knowledge led both to those affective patterns and to high scores 

on the mid-term. 

In this paper, we build on this work, replicating it but extending it 

to address these concerns by incorporating models specifically 

tailored to distinguish confusion and frustration and by adding a 

pre-test. By doing so, we can better understand the relationship 

between duration of affect and student learning outcomes. In these 

analyses, we consider confusion and frustration taken 

independently, as well as the union of these two affective states 

(which in our current view may have been what was assessed in 

[17]). 
 

2. METHODS 

2.1 Tutor Studied 
The learning system used in this study was Cognitive Tutor 

Algebra I, an interactive learning environment now used by 

approximately 500,000 students a year in the USA. The students  

 
Figure 1: The Systems of Equations A lesson, from 

Cognitive Tutor Algebra I, used in this study. 

in this study used a lesson on systems of algebraic equations as 

part of their regular mathematics curriculum. In Cognitive Tutors, 

students solve problems with exercises and feedback chosen based 

on a model of which skills the student possesses. Cognitive Tutor 

Algebra has been shown to significantly improve student 

performance on standardized exams and tests of problem-solving 

skill [14]. 

2.2 Data Set 
Data were collected from 89 students in rural Western 

Pennsylvania (the data presented here was also discussed in [4], 

where affect detectors were presented for this data; these affect 

detectors are in turn used in this paper, in “discovery with 

models” analyses). Compared with the state’s average, students at 

this high school had a higher average on the PSSA standardized 

exam, were less likely to be a member of ethnic minority group, 

and were less likely to be eligible for free or reduced-price lunch. 

They were well-balanced for gender. 

Each student in this study participated in a learning session using 

the Systems of Equations A lesson of Cognitive Tutor Algebra, 

which focuses on learning to graph and solve systems of 

equations. Each student used the tutor software for two class 

sessions. Tutor activities were preceded and followed by pre-test 

and post-test measures of learning. (Four students who did not 

complete all three of these activities were later excluded.) The 

average pre-test score was 75.2% (SD = 25.3%), and the average 

post-test score was 79.8% (SD = 23.5%). 

During the learning session, two expert field observers coded 

students’ affect following the protocol outlined in [19]. Within 

this protocol, holistic observations are conducted based on a 

combination of facial expression, posture, actions within the 

software, context, and other factors. Confusion and frustration are 

distinguished, with a key difference being that frustration involves 

negatively-valenced affect often combined with expressions of 

dissatisfaction or anger, whereas confusion is a less negative 

experience. Though the two states are relatively similar 

conceptually, typically they have not been challenging for 

observers to distinguish within this protocol; boredom and 

confusion have more often been the source of disagreement 

between coders [19]. Observations are conducted in a pre-

determined order, with an approach designed to minimize 

observer effects and to sample evenly across students during the 

period of observation, both in terms of number of observations per 

student, and the time when observations occur. 

After field observations were collected, they were synchronized 

with features distilled from interaction log data, and detectors 

were constructed and validated for several affect categories, two 

of which (confusion and frustration) will be used in this study. 

Complete detail on the automated detectors is given in [4]. In 

brief, the frustration detector was generated at using the REPTree 

algorithm, achieving a Kappa of 0.23 and an A’ of 0.64, under 

student-level cross-validation. The confusion detector was 

produced using JRip, achieving a Kappa of 0.40 and an A’ of 

0.71, under student-level cross-validation. Note that the values of 

A’ given here are lower than in [4]; these represent the exact same 

detectors, but the values of A’ given in that earlier work were 

computed using the implementation in RapidMiner 4.6, which 

was afterwards discovered to be buggy. The values given here are 

re-computed using the Wilcoxon interpretation of A’ rather than 

the AUC interpretation, using code at 

http://www.columbia.edu/~rsb2162/computeAPrime.zip. 



In the study presented in the current paper, automated detectors 

were used in order to achieve repeated measurements of a 

student’s affect over relatively brief periods of time, while 

avoiding observer effects (although the protocol in [19] is 

designed to be non-intrusive, and to reduce observer effects, 

continually observing a student over extended periods of time 

increases the probability that the student will notice that they are 

being observed and change their behavior). Labels were generated 

by automated detectors at the level of 20-second intervals of 

student behavior, termed clips. The grain-size of 20-seconds was 

selected because this matches the original length of the field 

observations used to create the detectors. Problem boundaries and 

other events were not considered when clips were created. While 

it could be argued that it is better to avoid allowing clips to extend 

across problem boundaries, affect may extend across these events, 

and avoiding these transitions may give a less representative 

picture of overall student affect. A total of 29,777 clips were 

generated across the students’ use of the tutoring software. 

Three applications of these detectors are studied.  The first 

application uses only the confusion detector, labeling clips as 

either confused (C) or not (N), splitting students based on a 50% 

confidence cut-off. The second application uses only the 

frustration detector, labeling clips as either frustrated (F) or not 

(N), also splitting students based on a 50% confidence cut-off. 

The third applies both detectors simultaneously, and considers a 

clip as confused/frustrated (referred to as A for “Any” below) if 

either detector had confidence over 50%.  This third application, 

in our view, may map best to the approach taken in [17]. 

Once clips were labeled, they were segmented into sequences of 

three consecutive states.  These sequences were chosen to be 

comparable to the 3-step sequences in [17], but represent a finer 

level of granularity because of the shorter duration of clips in this 

work (20 seconds versus 8 compilations, which can take several 

minutes). Potential sequences for each application are included 

with their frequencies in Tables 1-3. 

 

Table 1. Possible Sequences for Confusion, with 

Frequencies (%) 

 

 

Table 2. Possible Sequences for Frustration, with 

Frequencies (%) 

 

 

Table 3. Possible Sequences for “Any” (Unified 

Confusion/Frustration), with Frequencies (%) 

 
 

Once detectors were applied, the relative frequency of each 

sequence was compared to several learning measures, including 

pretest scores, posttest scores, and the difference between the two. 

Because the number of tests introduces the potential of spurious 

effects, the Benjamini & Hochberg (B&H) adjustment [6] is used 

as a post-hoc control. This method does not guarantee each test’s 

significance, but it does guarantee a low overall proportion of 

false positives, while preventing the substantial over-

conservativism found in methods such as the Bonferroni 

correction [cf. 20]. 

In this study, we consider two levels of baseline statistical 

significance (α=0.05 or 0.1) for the Benjamini & Hochberg 

adjustment. The 0.05 level reflects full statistical significance, 

whereas 0.1 reflects marginal significance. Within the B&H 

adjustment, each test retains its original statistical significance, 

but the α value cutoff for significance changes depending on the 

order of the test in significance among the tests run. For 

understandability, adjusted significance cutoffs are given in tables 

below for all tests run. 
 

3. RESULTS 

3.1 Duration of Affect and Learning Gains 
In this section, we compare the relative frequency of sequences of 

confusion and frustration to assessments of gains in student 

learning over time. Learning gains are computed as post-pre; the 

alternate metric of (post-pre)/(1-pre) is difficult to interpret when 

some students obtain pre-test scores of 100%, which were seen in 

this data set. In order to understand the importance of individual 

patterns, we apply separate significance tests for each pattern 

(with post-hoc controls as discussed below), rather than building a 

unitary model to predict learning gains from a student’s 

combination set of sequences. 

Results for confusion diverged considerably from what might be 

predicted based on previous research.  As shown in Table 4, only 

three of eight possible sequences showed marginal significance 

when correlated with confusion, and all of these effects 

disappeared after post-hoc controls were applied.  That is, 

contrary to theoretical predictions [10, 22], and the interpretation 

of the findings in [17], differences in sequences of affective state 

of confusion do not appear to be associated with learning gains in 

this data. 

 

Table 4. Confusion vs. Learning Gains (No results 

remain significant after post-hoc control)  

 
 

By contrast, frustration (Table 5) shows several correlations with 

learning gains that remain marginally statistically significant after 

post hoc adjustments. Interestingly, the patterns for frustration 

match those reported for confusion in [17]. Namely, extended (3-

step) periods of no frustration (NNN) are negatively correlated 

with learning gains. That is, 60 seconds without frustration 

NNN NNC NCN NCC CNN CNC CCN CCC 

93.78 1.91 1.74 0.23 1.84 0.09 0.23 0.16 

 

NNN NNF NFN NFF FNN FNF FFN FFF 

96.20 1.16 1.09 0.14 1.15 0.08 0.14 0.04 

 

NNN NNA NAN NAA ANN ANA AAN AAA 

90.25 2.94 2.70 0.41 2.86 0.20 0.40 0.24 

 

3-step 

- diff 
r p 

p cutoff 

(sig) 

p cutoff 

(marginal)  

NNC 0.21 0.054
 
 0.00625 0.0125 

CNC 0.198 0.070
 
 0.0125 0.025 

NNN -0.181 0.097
 
 0.01875 0.0375 

NCN 0.179 0.101 0.025 0.05 

CNN 0.157 0.151 0.03125 0.0625 

NCC 0.149 0.173 0.0375 0.075 

CCN 0.131 0.231 0.04375 0.0875 

CCC -0.049 0.654 0.05 0.1 

 



negatively impacts learning. Introducing one 20-second interval of 

frustration (as in NFN, NNF, FNN, and FNF) seems to improve 

learning outcomes (r=0.273, 0.25, 0.248, and 0.208, respectively), 

but this effect is reduced or eliminated if the sequence contains 

two intervals of frustration. Only one sequence with two intervals 

of frustration (FNF) remains marginally significant after post-hoc 

adjustment, but with a lower effect-size (r=0.208) than those with 

only one interval of frustration.  These results accord with those 

for confusion in [17]. 

As such, one possible explanation is that the construct primarily 

being inferred in [17] was frustration. The findings seen here 

match well if that assumption is made; they do not match well, if 

the codes in [17] genuinely reflected the affective state of 

confusion. We will discuss this possibility further in section 3.3. 

 

Table 5. Frustration vs. Learning Gains  

(Significant results are in dark gray; marginally 

significant results are in light gray) 

 
 

3.2  Duration of Affect and Pre-test/Post-test 
In the previous section, we saw evidence that brief frustration is 

associated with positive learning gains, but that lengthier  

 

Table 6. Confusion vs. Pretest Scores 

(Significant results are in dark gray; marginally 

significant results are in light gray) 

 

 

frustration is associated with poor learning gains. In this section, 

we break down the learning gain measure into its constituent 

parts, the student’s pre-test score and post-test score. Results 

shown in Tables 6-7 show that pretest scores can predict the 

frequencies of both confusion and frustration during the learning 

session. Specifically, lower pretest scores are more likely to co-

occur with sequences containing at least one instance of that 

particular affect (as in CNN, NCN, and NNC when only the 

confusion detector is applied in Table 6 or in FNN, NFN, or NNF 

when only the frustration detector is applied in Table 7). Similar 

effects are found for sequences where two instances of either 

affect have been detected (as in CCN and NCC, or FFN and NFF). 

Further, higher pretest scores correlate with higher frequencies of 

prolonged states of not-confused and not-frustrated (both of which 

are represented as NNN in Tables 6-7). All the significant r-values 

in Tables 6-7 remain significant or marginally significant after the 

post-hoc control. 

 

Table 7. Frustration vs. Pretest Scores 

(Significant results are in dark gray; marginally 

significant results are in light gray) 

 

Surprisingly, correlating the affective sequences to post-test 

scores shows essentially no relationships. As Tables 8-9 show, 

neither confusion nor frustration sequences are significantly 

correlated with posttest results. In other words, low pre-test results 

predict confusion and frustration will occur during the learning 

session, but presence of these affective states does not predict 

post-test performance.  These results suggest either that the tutor 

was effective at bringing all students up to mastery, or that there 

was a ceiling effect in test performance.   In other words, students 

who were confused or frustrated during the learning session 

because they began with low domain knowledge caught up to 

students who, because they began with high domain knowledge, 

experienced little confusion or frustration. However, it is notable 

that as was found when compared to learning gains and to pre-test 

results, confusion and frustration have the same pattern for post-

test results. 
  

3-step 

- diff 
r p 

p cutoff 

(sig) 

p cutoff 

(marginal)  

NFN 0.273 0.011 0.00625 0.0125 

NNN -0.262 0.016 0.0125 0.025 

NNF 0.25 0.021 0.01875 0.0375 

FNN 0.248 0.022 0.025 0.05 

FNF 0.208 0.056 0.03125 0.0625 

FFF 0.174 0.111 0.0375 0.075 

NFF 0.136 0.215 0.04375 0.0875 

FFN 0.136 0.215 0.05 0.1 

 

3-step 

- pre 
r p 

p cutoff 

(sig) 

p cutoff 

(marginal)  

NCC -0.295 0.006 0.00625 0.0125 

CCN -0.283 0.009 0.0125 0.025 

NNC -0.26 0.016 0.01875 0.0375 

NNN 0.255 0.018 0.025 0.05 

CNN -0.226 0.037 0.03125 0.0625 

NCN -0.195 0.074
 
 0.0375 0.075 

CNC -0.161 0.141 0.04375 0.0875 

CCC -0.005 0.967 0.05 0.1 

 

3-step 

- pre 
r p 

p cutoff 

(sig) 

p cutoff 

(marginal)  

NNN 0.277 0.010 0.00625 0.0125 

NNF -0.273 0.011 0.0125 0.025 

FNN -0.27 0.012 0.01875 0.0375 

NFN -0.267 0.014 0.025 0.05 

NFF -0.231 0.033 0.03125 0.0625 

FFN -0.231 0.033 0.0375 0.075 

FNF -0.125 0.253 0.04375 0.0875 

FFF -0.02 0.854 0.05 0.1 

 



Table 8. Confusion vs. Posttest Scores (No results 

remain significant after post-hoc control) 

 

Table 9. Frustration vs. Posttest Scores (No results 

remain significant after post-hoc control) 

 
 

3.3 Unifying Confusion and Frustration 
Confusion and frustration have some theoretical similarities, 

although they are often considered separately in affective 

research.  Both are affective states that occur when a student is 

struggling with difficult material and has not yet achieved 

understanding. As discussed earlier, one way to interpret the work 

in [17] is that their model of confusion may also have included 

instances of frustration. Hence it may be worth studying these two 

constructs in a unified fashion – treating them as if they are the 

same construct during analysis. Also, as discussed in previous 

sections, the relationships between confusion and learning, and 

frustration and learning, were qualitatively similar in our data set. 

They were of different magnitudes (frustration had higher 

correlations than confusion) but were generally pointing in the 

same direction. This trend also warrants a joint analysis of the two 

states. 

In order to do so, we applied both detectors (which operate 

independently) to the data at the same time. Any instance that was 

labeled as either confused (C) or frustrated (F) in previous 

sections was now labeled as “any” (A), including the rare 

instances where a single clip was labeled by the detectors as 

indicating both confusion and frustration. Instances of A are 

contrasted with instances where neither (N) affect was detected. 

Table 10 shows the correlations between learning gains and 3-step 

any/neither (A/N) sequences. 

 

Table 10. Correlations between 3-step “Any” sequences 

and Learning Gains. (Significant results are in dark 

gray; the marginally significant, in light gray.) 

 
 

Several findings from this analysis are similar to the findings 

presented earlier in this paper, but obtain higher correlations than 

are seen for confusion or frustration alone. Extended periods of 

“neither” (i.e., NNN) during the learning session are negatively 

correlated with learning gains (r = -0.279). All 3-step sequences of 

short term “any” (i.e., NNA, NAN, and ANN) are found to be 

positively correlated with learning gains, (r=0.295, 0.284, and 

0.262, respectively). Moreover, ANA, NAA, and AAN are found 

to be positively correlated at a marginally significant level 

(r=0.213, 0.204, and 0.19, respectively). 

Compared with the significant r-values of 3-step frustration and 

learning gains in Table 5, the r-values for “any” have larger 

magnitudes, meaning that combining confusion and frustration 

yields stronger correlations with learning gains than frustration 

does alone. 
 

4. CONCLUSION AND DISCUSSION 
In this paper, we discussed correlations between student test 

scores and sequences of two affective states—confusion and 

frustration—during learning with Cognitive Tutor Algebra. These 

affective states were studied both independently and in 

combination.  

A decade ago, key theoretical models of confusion and frustration 

during learning and interaction hypothesized that confusion leads 

to frustration [16] as part of a process where students fail to learn. 

In line with this theory, researchers suggested that identifying and 

responding to frustration was essential [13, 15]. However, 

research looking at overall proportions of student affect (e.g., 

confusion or frustration) found inconsistent patterns for confusion 

and null results for frustration (e.g., [7, 21], leading one paper to 

argue that frustration is significantly less important to learning 

than other affective states such as boredom [3]). 

Research that followed this suggested that the dynamics of affect 

over time might play an important role in learning outcomes. 

Confusion that led to frustration, for example, was hypothesized 

to lead to poorer learning outcomes than confusion that resolved 

[10, 22]. 

In this paper, we find a pattern that accords broadly with [17], 

where confusion and frustration are associated positively with 

learning for brief episodes and negatively for lengthy episodes. 

Somewhat contrary to expectations (but consistent with the work 

in [17]), this effect is strongest if the two affective states are 

considered together, and weakest if confusion is considered alone 

3-step 

- post 
r p 

p cutoff 

(sig) 

p cutoff 

(marginal)  

CCN -0.155 0.157 0.00625 0.0125 

NCC -0.147 0.180 0.0125 0.025 

NNN 0.068 0.539 0.01875 0.0375 

CNN -0.064 0.561 0.025 0.05 

CCC -0.061 0.579 0.03125 0.0625 

CNC 0.052 0.635 0.0375 0.075 

NNC -0.04 0.716 0.04375 0.0875 

NCN -0.005 0.966 0.05 0.1 

 

3-step 

- post 
r p 

p cutoff 

(sig) 

p cutoff 

(marginal)  

FFF 0.177 0.106 0.00625 0.0125 

FNF 0.102 0.351 0.0125 0.025 

NFF -0.093 0.396 0.01875 0.0375 

FFN -0.093 0.396 0.025 0.05 

NFN 0.025 0.822 0.03125 0.0625 

NNF -0.009 0.937 0.0375 0.075 

FNN -0.008 0.946 0.04375 0.0875 

NNN 0 1.000 0.05 0.1 

 

3-step 

- diff 
r p 

p cutoff 

(sig) 

p cutoff 

(marginal)  

NNA 0.295 0.006 0.00625 0.0125 

NAN 0.284 0.008 0.0125 0.025 

NNN -0.279 0.010 0.01875 0.0375 

ANN 0.262 0.015 0.025 0.05 

ANA 0.213 0.050
 
 0.03125 0.0625 

NAA 0.204 0.061
 
 0.0375 0.075 

AAN 0.19 0.081
 
 0.04375 0.0875 

AAA 0.01 0.931 0.05 0.1 

 



(with frustration in the middle). This finding is not inconsistent 

with the prior literature (differing relations between frustration 

and learning based on the length of frustration are quite consistent 

with overall null effects) but does reinterpret it somewhat. 

One important limitation to the research presented here is that the 

length of the affective sequences differs from that found in [17], 

complicating comparisons between the two. It is known that 

different affective states often have different durations [8]. 

However, these durations are likely to be determined by the 

population and learning context as well. In other words, brief 

frustration in one context may be lengthy frustration in another. 

(This possibility may explain the similarity in results between this 

paper and [17]. Although the time per affective observation was 

different, the times used in each environment may have matched 

the general time for a student to make progress in the different 

environments, as computer programming is a more time-

consuming activity than completing highly scaffolded 

mathematics problems.) Understanding what the “tipping point” is 

between brief and lengthy confusion or frustration, in different 

contexts, may be a valuable step for future research. 

Overall, this paper’s results suggest that attempting to understand 

overall relationships between affective states and learning is prone 

to conflating multiple phenomena. Affective states are not unitary; 

it matters at minimum how long they are, it matters what follows 

them [23], and probably other factors matter as well (such as 

culture, for instance). Researchers have also considered the 

possibility of multiple types of frustration (for instance, [12] 

speaks of “pleasurable frustration”). Our results show temporal 

effects for frustration that are highly similar to those hypothesized 

for confusion, results that deserve more careful consideration in 

future research. Though a student’s overall degree of frustration 

has often been associated with null effects [e.g., 7, 21], it appears 

that frustration is associated with differences in learning when 

considered in a finer-grained fashion. It may be that the conditions 

that lead to both frustration and confusion (the struggle associated 

with learning material that is not immediately apparent) are 

necessary components of the learning process, and both 

frustration and confusion only become detrimental if a student is 

unable to reach resolution in an adequate time frame. It is also 

possible that frustration may be simply an outcome of the 

cognitive processes underlying these phenomenon, or even just a 

result of confusion being resolved or not resolved (e.g., different 

types or intensities or durations of confusion might trigger 

persistence or resistance, while varying lengths of frustration 

merely reflect these differences). The similar patterns between 

confusion and frustration raise questions about whether the best 

theoretical split is even between confusion and frustration, or 

whether we should instead move to comparing brief-confrustion, 

extended-confrustion, and perhaps pleasurable-confrustion 

(alternate terms for the affective state combining confusion and 

frustration are welcome). Work to understand and model these 

affective states in their full complexity will be an essential area of 

future research. These endeavors will be supported by the advent 

of data-mined models, such as the ones used here, that can 

identify affect in a fashion that is both fine-grained and scalable. 
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