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ABSTRACT 

Massive Open Online Courses (MOOCs) are an increasingly 

pervasive newcomer to the virtual landscape of higher-education, 

delivering a wide variety of topics in science, engineering, and the 

humanities. However, while technological innovation is enabling 

unprecedented open access to high quality educational material, 

these systems generally inherit similar homework, exams, and 

instructional resources to that of their classroom counterparts and 

currently lack an underlying model with which to talk about 

learning. In this paper we will show how existing learner 

modeling techniques based on Bayesian Knowledge Tracing can 

be adapted to the inaugural course, 6.002x: circuit design, on the 

edX MOOC platform. We identify three distinct challenges to 

modeling MOOC data and provide predictive evaluations of the 

respective modeling approach to each challenge. The challenges 

identified are; lack of an explicit knowledge component model, 

allowance for unpenalized multiple problem attempts, and 

multiple pathways through the system that allow for learning 

influences outside of the current assessment.  

Keywords 

Probabilistic Graphical Models, Bayesian Knowledge Tracing, 

MOOC, Resource model, edX 

1. INTRODUCTION 
Massive Open Online Courses (MOOCs) are a quickly emerging 

modality of learning in higher-education. They consist of various 

learning resources, often lecture videos, etexts, online office 

hours, assessments which include homework and exams, and have 

a specific time in which they begin and end, often corresponding 

closely to that of their residentially offered counter-parts. While 

the efficacy of MOOCs compared to their residential offerings is 

an open question; from the viewpoint of educational research, 

MOOCs provide several substantial advantages, most notably the 

detailed digital trail left by students in the form of log data and the 

size of the student cohorts, which are often several orders of 

magnitude larger than typical on-campus-only offerings. 

Unlike Intelligent Tutoring Systems (ITS), MOOCs do not 

currently provide tutorial help on demand at the points of need; 

instead, the knowledge is self-sought and supplied by a 

redundancy of information across various types of resources 

resulting in a variety of student selected resources and pathways 

through the system. This rich data provided by MOOCs presents 

an opportunity to investigate the efficacy of student behavior 

under varying conditions; however, MOOCs currently lack a 

model of learning with which to instrument this exploration. In 

this paper we will show how existing learner modeling techniques 

based on Bayesian Knowledge Tracing can be adapted to the 

inaugural course, 6.002x: circuit design, on the edX MOOC 

platform. We identify three distinct challenges to modeling 

MOOC data in section 2, followed by a description of our 

evaluation methodologies in section 3, and finally results of the 

predictive evaluations of the respective modeling approach to 

each challenge in section 4. 

1.1 Anatomy of the MOOC 
The inaugural course on the edX platform, 6.002x (Spring 2012), 

was a 14 week-long online course featuring video lectures in 

weekly sequences interspersed with lecture problems, an online 

textbook, a discussion forum, and a course wiki. The web 

interface for the course is shown in Figure 1. While the  sequence 

of videos and problems is suggested in the form of a timeline at 

the top of the interface, the student can take any path through the 

material they choose including skipping or revisiting content. 

 

Figure 1. The interface for the 6.002x MOOC on edX. This 

screenshot shows a student answering a problem that is part of the 

Week 1 lecture sequence. 

Student grades were based on 12 homework assignments and 12 

virtual labs (weighted 15% for each category, with unlimited 

answer attempts allowed), a midterm and a final exam (30% and 

40% respectively, with 3 attempts allowed). Although lecture 

problems did not count towards the grade, they were still marked 

correct and incorrect, with instant feedback as given on the 

homeworks. There were 289 scored elements (i.e. counting 

problem subparts) in 104 lecture sequence problems, 197 in 37 

homework problems, 26 in 5 midterm problems and 47 in 10 final 

exam problems. The homework interface and scoring mechanism 

had some nuances that deserve elaboration. 

Weekly homework assignments consisted of several problems 

which were all displayed on a single web page. A typical problem 

consisted of a figure plus several answer field “subparts” that 

prompted the user for input. Correctness feedback would be 

shown to the right of the answer fields in the form of a red “X” for 

incorrect (or blank answers) and a green checkmark for correct 

answers. This feedback was displayed after the student clicked the 

problem’s "check" button, which simultaneously checked all 

answer fields within the problem. Students could answer the 

subparts in any order they chose however several problems’ 

subparts required the incorporation of answers from a previous 

subpart. If a student answered all the subparts before their first 



“check”, the order in which she answered the subparts was not 

known, however many students elected to click the check button 

after each consecutive answer. Unlike most ITSs, homework was 

scored based on the last answer entered by the user instead of the 

first. 

1.2 Dataset 
The course drew 154,000 registrants, however; only 108,000 

entered the course with around 10,000 completing the course 

through the final. Among those, 7,158 received a certificate for 

having earned at least a 60% weighted average. Our dataset 

consisted of 2,000 randomly chosen students from the certificate 

earners. A further reduction of the dataset was made by randomly 

selecting ten problems (and their subparts) from each of the three 

types of assessments; homework, lecture sequence, and exam 

problems.  

The data for this course originated from JSON log files produced 

on the Amazon EC2 cloud, where the edX platform is hosted. The 

original log files were separated out into individual user files and 

the JSON records were parsed into a human readable time series 

description of user interaction with components of the MOOC. 

The final data preparation step compiled an event log by problem, 

consisting of one line per student event relevant to that problem. 

This included time spent on the event, correctness of each subpart, 

when the student entered or changed an answer, the attempt count 

of that answer, and resources accessed by the student before and 

between responses. An example of this data format is shown in 

Table 1. 

Table 1. Example of the event log format of our distilled dataset 

User Res  Time Resp1 Resp2 Count1 Count2 

9 video 2m 30s - - - - - - - - 

9 answer 10m 5s correct correct 1 1 

10 book 4m 41s - - - - - - - - 

10 book 40s - - - - - - - - 

10 answer 20s incorr. - - 1 - - 

10 answer 15s incorr. - - 2 - - 

10 answer 1m 8s incorr. incorr. 3 1 

10 answer 28s - - correct - - 2 

10 video 2m 10s - - - - - - - - 

10 answer 6s correct - - 4 - - 

 

1.3 Bayesian Knowledge Tracing 
Knowledge Tracing (KT) [1] comes from the motivation to 

implement mastery learning [19], where every student is allowed 

to learn skills at his or her own pace and does not continue on to 

more complex material until mastery of pre-requisites has been 

achieved. It is based on a simplification of the ACT-R theory of 

skill acquisition [2] and is tasked with making this inference of 

mastery in the Cognitive Tutors, among other ITS. To achieve this 

end, simpler mastery criterion exist such as N-correct in a row to 

master, which is used by the ASSISTments Platform in their skill 

builder problem sets [3] and in the Khan Academy tutor where the 

term proficiency is used instead of mastery [4]. In a Cognitive 

Tutor, acquirable knowledge, whether declarative or procedural, is 

defined by fine-grained atomic pieces called Knowledge 

Components (KCs), typically defined by a subject matter expert. 

Answer steps in the tutor are tagged with these KCs and a 

student’s past history of responses indicates his or her level of 

mastery of the KC. In this context, mastery is inferred to have 

occurred when there is a high probability (usually >= 0.95) that 

the KC is known by the student.  

The initial KT model was not introduced as a Bayesian model; 

however, its formulas were found [6] to be perfectly represented 

by a Dynamic Bayesian Network [20], which has become the 

standard representation referred to as Bayesian Knowledge 

Tracing (BKT). The standard BKT model is defined by four 

parameters; prior knowledge p(Lo)
1, probability of learning p(T), 

probability of guessing p(G), and probability of slipping p(S). 

Based on these parameters, inference is made about the student’s 

probability of knowledge at time opportunity n, p(Ln). The 

parameters and inferred probability of knowledge can also be used 

to predict the correctness of a student response with: 

 (        )   (  )   (  )     (   )   ( ) 

KCs vary in difficulty and amount of practice needed to master on 

average, so values for these parameters are KC dependent and can 

be fit to training data such as log data from a previous cohort of 

students. Parameter fitting is often accomplished using 

Expectation Maximization (EM) or a grid-search of the 

parameters that maximizes a loss function such as sum of squared 

residuals of the predicted probability of a correct answer and the 

observed correctness. Neither fitting procedure has proved 

consistently superior to the other [5, 21], however; grid-search, 

while faster at fitting the basic BKT model, grows exponentially 

with the number of parameters which is a concern for extensions 

to BKT with higher parameterization. With both methods of 

parameter fitting, the objective is to define parameters that result 

in a projection of performance that best matches the observed 

data, which is the students’ temporal sequence of correct and 

incorrect responses to questions of a particular KC.  

The use of Knowledge Tracing has two stages, the stage in which 

the four parameters are learned, and the stage where an individual 

student’s knowledge is being inferred from their responses. 

During the inference stage, the probability of knowledge at time n, 

given an observation, is calculated from a student’s response with 

the following when a correct response is observed: 

 (           )  
 (  )   (  )

 (  )   (  )    (   )   ( )
 

And with the following when an incorrect response is observed: 

 (             )  
 (  )   ( )

 (  )   ( )    (   )   (  )
 

The p(Ln) on the right side of the formula is the prior probability 

of knowledge at that time, while p(Ln|Evidencen) is the posterior 

probability of knowledge calculated after taking an observation at 

that time into account. Both formulas are applications of Bayes 

Theorem and calculate the likelihood that the explanation for the 

observed response is that the student knows the KC. Since the 

student will be presented with feedback, there is a chance to learn. 

The probability the student will learn the KC from the opportunity 

is captured by this formula which calculates the new prior after 

adding in the probability of learning: 

 (  )   (                )   (                 )
  ( ) 

These formulas are used in the task of determining mastery, 

however; this model of knowledge has been extended to serve as a 

                                                                 

1 The name “P(Lo)” was used to denote the prior parameter in [1]. 

In a BKT model, this is symbolically equivalent to p(L1). 



platform to study learning phenomenon [7, 8, 9]. It is this capacity 

for discovery that we aim to enable in MOOCs by adapting BKT 

approaches. 

2. Model Adaptation Challenges  
In order to build a foundation for measuring learning phenomena 

in the MOOC, several differences between MOOCs and 

Intelligent Tutoring Systems need to be addressed. The first is the 

lack of a subject matter expert mapping of the KCs associated 

with questions in the system. The second challenge is the attempt-

until-correct scoring of the homework and lecture sequence 

problems. Lastly, we will address the open interface of the virtual 

learning environment which allows for users to take different 

pathways through the course which influences learning rates 

within a KC differently depending on path. 

2.1 Lack of a KC model 
The term “learning” can have broad meanings, however; in 

mastery contexts it is referred to with respect to a particular skill, 

or knowledge component being acquired. The mapping of these 

skills to questions, commonly referred to as a Q-matrix [10], as 

well as the enumeration of the skills, often comes from a subject 

matter expert. These skills have been referred to as cognitive 

operations in the psychometrics literature [11] and the processes 

of identification of skills is commonly referred to as cognitive task 

analysis in the context of ITS [12] and expert systems. Learning 

curves analysis [13], a KC mapping evaluation technique, asserts 

that evidence of a good skill mapping is a monotonically 

decreasing error rate across opportunities to answer questions 

within a skill. Similarly, fluency is expected to increase 

(decreasing time to solve) across correct answers to a particular 

skill. A unidimensional view of questions within a MOOC or a 

subject such as Geometry, for instance, would result in a noisy 

performance and fluency plot since error rates and response times 

would jump as soon as new topic material was introduced in the 

curriculum. 

While subject matter expert defined knowledge components or 

learning objectives are planned for select future MOOC offerings, 

they are not common and do not exist in the 6.002x course data 

used in this paper. Therefore, our goal was to utilize elements of 

the course structure to inform a mapping of KCs to questions. We 

chose to leverage the problem and subpart structure of 

assignments, where the problem itself would serve as the KC and 

its subparts would be the questions belonging to the KC. The 

rationale for this choice was that the professor of the course often 

has a particular concept in mind that they wish to tap with each 

problem. Performance on the subparts is evidence of the student 

grasping this concept. The benefit to this type of mapping is that it 

is domain agnostic and can be used as a baseline KC model for 

any MOOC. The drawback is that it does not allow for 

longitudinal assessment of learning over more than one week 

since answers to a given KC will only occur within a problem in a 

particular week’s assignment. Reduced model fit is another 

drawback as Corbett & Conrad [14] evaluated a similar superficial 

mapping of questions to course problem structure and found that 

this indeed sacrificed achieving more systematic, smother learning 

curves. Nevertheless, we believe this mapping is a reasonable start 

which allows for phenomenon to be studied within a problem 

(which we coin “problem analytics”) and the methods and models 

described here can be applied with a different KC model swapped 

in, derived by a subject matter expert, inferred from the data, or a 

hybridization of the two [15].  

2.1.1 Basic model definition 

 

Figure 2. The basic model – a retrofit BKT model to capture 

answers to multiple questions in a single time slice and using 

homework problem as the KC. The number of parameters in this 

model is:   

Our most basic retrofitting of the BKT model to the MOOC is 

shown in Figure 2. In this model, which we will refer to as the 

“basic” model, the homework problem is the latent knowledge, K, 

and the observed questions are the subparts of the homework 

problem. When student knowledge is in the learned state this 

means the student has the knowledge required to answer all of the 

subparts. Whereas traditional application of BKT has only a single 

observed random variable causally linked to from the latent 

variable, in this model we had to accommodate for observation of 

multiple subpart observations at once. For example, these are the 

calculation steps for inferring the probability of knowledge at the 

second time slice when a student answers subparts one and two 

incorrectly on the first click of the problem check button and the 

third subpart correctly on the second click of the problem check 

button (leaving parts one and two unchanged). 

First, the posterior is calculated given an incorrect answer to the 

first subpart:  (               )  
 (  )  ( )

 (  )  ( )   (   )  (  )
  

Next, the posterior is updated again given an incorrect answer to 

the second subpart: 

 (                               )  
 (                )  ( )

 (                )  ( )   (                 )  (  )
  

Steps one and two are interchangeable, including when correct 

and incorrect responses are observed.  

The prior for knowledge at the second time slice is then calculated 

by applying the probability of learning to the posterior: 

 (   )   (                              )  

 (                               )   ( )  

Finally, the posterior probability of knowledge at the second time 

slice is calculated given the observation of a correct answer on the 

third question:  (             )  
 (  )  (  )

 (  )  (  )   (   )  ( )
  

2.2 Multiple unpenalized answer attempts  
The Cognitive Tutors allow for multiple answer attempts, as does 

the ASSISTments Platform, however; the scoring policy for those 

systems is to score only the first response to each question and 

students are aware of this policy. The assumption is therefore that 

the most informative response is the first response and in a 

standard application of BKT, only the first responses to questions 

are used to train and update the model. In the MOOC, three 

responses are allowed on the exam problems and unlimited 

responses on the homework and lecture sequence problems. The 

scoring policy for all problems is to score the last response. Since 

Model Parameters
p(L0) = Probability of initial knowledge
p(G) = Probability of guess 
p(S) = Probability of slip 

Node representations
K  = Knowledge node
Q1..n = Question nodes

K
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p(G)
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Node states
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problem sub-parts



students are aware of this policy, it cannot be assumed that the 

most informative response is the first. For example, some students 

may decide to employ a quick heuristic on their first attempt 

instead of thinking through the problem as was observed among 

male users in an intro physics course [16]. Using only the last 

response is also problematic as these responses tend to have a 

very high percent correct, at least in homework and lecture 

problems, and a large amount of information would be lost in 

trying to model learning with only these responses. It is therefore 

an open and empirical research question as to where the most 

information exists in student answer attempts and so we define a 

model that allows the data to give us the answer. Past approaches 

have used regression to set BKT guess and slip parameters based 

on a host of contextual features [22], however these models, by 

admission, have not considered multiple attempts within a 

question. 

Studies on test data where students are allowed multiple 

unpenalized attempts suggest that more information is contained 

in later responses (higher IRT discrimination) [17]. In addition to 

evaluating if a BKT model with attempt count information 

outperforms the basic BKT model in predictive accuracy, we also 

inspect the parameters of the model for each attempt count to 

observe if the trends seen in past studies reemerge in our data. 

2.2.1 Count model definition 

 

Figure 3 The count mode – conditioning question guess and slip 

on answer attempt count to allow information gained from 

responses to vary. The number of parameters in this model is: 

    (                             ) 

The guess and slip parameters of the model dictate the amount of 

information gained about the latent variable from a correct or 

incorrect response; a guess and slip of zero in the Bayesian update 

calculation would mean that the value of the responses was 100% 

reflective of the binary state of the latent variable, while a guess 

and slip of 0.50 represents the maximum uncertainty regarding a 

response. Allowing for a different guess and slip parameter 

depending on attempt count therefore allows the model to capture 

a differing amount of information gained at each attempt. This is 

our modeling approach to multiple unpenalized attempts which 

we will refer to as the “count” model.  

In the model, shown in Figure 3, count nodes, which are 

observable random variables, are added for every subpart since 

users can be on different attempt counts for different subparts. 

The size of the count nodes correspond to the number of attempt 

counts chosen to model. Inspection of the dataset showed that 

only ~4% of attempts were 5th attempts, therefore the size of the 

attempt count node was set to 6 which was also the count used for 

any attempt count over 6. This setting was fairly ad-hoc and could 

be improved upon by setting based on empirical evaluation. While 

the attempt count node contains a prior parameter, this was not 

counted as a free parameter but was instead fixed to the observed 

distribution of count attempts in the training data. 

2.2.2 Allowing for difficulty/information gain to 

differ among subparts 
Recent work has extended BKT to allow for different guess and 

slip parameters to be modeled per item in a model coined KT-

IDEM (Item difficulty effect model) [3]. In ASSISTments, each 

problem template within a skill builder problem set was allowed 

to fit different guess and slip parameters, and in the Cognitive 

Tutor this was done at the level of the problem, where all steps of 

a given KC shared a guess/slip with one another within a problem 

but steps of the same KC that appeared in a different problem 

could fit different guess and slip parameter values. In both 

systems, prediction accuracy was improved by ~15% when there 

was ample data to fit each set of parameter (6 or more data points 

per parameter). This can be seen as allowing for variation in 

question difficulty among questions in a KC, or in the case of the 

Cognitive Tutor, allowing for variation in KC performance 

depending on problem context. It can also be interpreted as 

modulating the information gained about the latent variable 

depending on the question in much the same way as the count 

nodes in the count model modulate the information gained about 

the latent variable from responses depending on attempt count. 

This item parameterization technique was applied to our MOOC 

data in the basic and count model, creating two additional models 

referred to as the “idem” and “idem count” model. In the idem 

model, the number of parameters increases to:     
(             ) and in the idem count model, increases to: 

    (             )  (                           ).  

2.3 Multiple pathways through the system 
In many virtual learning environments, particularly in K-12, 

students complete one set of problems at a time and their path 

through the system is either fixed or the interface inhibits 

switching between problem sets. In the 6.002x MOOC, multiple 

problems are displayed on a page and students are frequently 

observed returning to a problem after answering another [18]. 

Besides learning from other problems, the redundancy of 

information found among the book pages, videos, wiki, and 

discussion board also allow the student to self-select his or her 

own path to acquiring the knowledge needed to complete the 

assignments. This means that influences on learning can come 

from a variety of sources in the learning environment, unlike most 

ITS where the learning can be assumed to come from feedback 

and tutorial help provided within the problem at hand. While this 

poses a challenge, in terms of capturing the variance in student 

learning, it also provides a rich trail of information and variety of 

pathways through the system that can be data mined and modeled. 

Table 1 in section 1.2 illustrates how students can weave in and 

out of resources while answering assignment questions. It shows 

how one student answered a question correct after viewing a video 

and another student answered the same question incorrect until 

encountering a video, after which the hypothetical student 

answered the question correct. The consideration of resource 

influence on learning can be posed as a credit/blame inference 

problem, where, depending on problem answers and resource 

access in the aggregate, resources can be credited with learning or 

blamed for being ineffective. This model is at the very early 

stages of research and considers only resource type, which can be 

one of the following seven types: book, video, wiki, discussion, 

tutorial, answer to another problem, and answer to the problem at 
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hand. Up to the last five resource access events before a response 

are used, earlier events are discarded.  

2.3.1 Resource model definition  

 

Figure 4. The resource model – based off of the idem model with 

resource access information added and hypothesized to influence 

learning. The number of parameters in this model is:     
(             )  (                           ) 

The resource model was built from the idem model without 

attempt count taken into consideration. The model is the same 

except for the addition of the observable resource node, R, which 

conditions the learning parameter, p(T|R). At each time slice, the 

observable, R, is given the value corresponding to the current 

resource type being accessed. This model generalizes the idem 

model and can be made mathematically identical by removing all 

resources types except for “answer to the problem at hand”, which 

represents the standard learning parameter capturing the benefit of 

feedback. When a non-problem resource is accessed, the R node 

gets the value of that resource type and a time slice with no 

question answer input is used.  

3. Training and Evaluation Methodology 
All five models (basic, count, idem, idem count, and resource 

model) were evaluated with a 5-fold student level cross-validation 

where the 2,000 students and their respective data were randomly 

assigned to one of five bins. Models were trained on the data in 

four bins and predictions were made on the data of the students in 

the fifth bin. This training/testing procedure was repeated five 

times, such that each bin was used once as the testing set. This 

evaluation procedure was run for all models on the 10 lecture, 

homework, and exam problems sampled in the dataset with the 

exception of the resource model which was only run on the 

homework problems. The premise of a cross-validation is to 

investigate if the variance captured by the models generalizes to 

held out data. If it does, indicated by improved predictive 

performance over a simpler model, the assumption is that the 

variance captured by the more complex model is real and 

reproducible. Ideally, training can be done on a previous course 

cohort and tested on the data of a cohort from a subsequent 

offering of the course. In the absence of this kind of training/test 

data, student level cross-validation serves as a strong substitute.  

3.1 Model training details 
The models used Expectation Maximization (EM) to fit 

parameters to the training sets with the same set of ad-hoc initial 

parameter values used for all models: p(Lo) = 0.20, p(T) = 0.10, 

p(G) = 0.10, p(S) = 0.15. Due to the data being restricted to a 

limited number of computing resources at the time of evaluation, 

a low maximum EM iteration count of 5 was set to make the 

cross-fold evaluations tractable in the time period allotted. Each 

cross-validation fold for homework took on average 12.8 hours of 

compute time per model running on an Intel i5 2.6Ghz machine. 

The lowest compute time model was the basic model with 10.7 

hours per fold and the highest was the resource model with 15.1 

hours per fold. Lecture and exam problems took 1/10th the time to 

evaluate suggesting that more answer events occurred in the 

homework. For future runs, more tractable compute times could 

be sought with a more aggressive filtering of homework students 

with excessively long attempt counts or by cutting off response 

sequence at a particular count. 

3.2 Model prediction detail 
After the parameters of the model are trained, each student answer 

in the test set is predicted one student at a time and one time slice 

at a time for that student. This prediction procedure is identical to 

previous literature evaluating KT with the difference of 

accommodating for multiple responses per time slice. Walking 

through the prediction procedure; response data for the first 

student in the test set is loaded. On the first time slice, observable 

evidence, other than the response, is entered such as attempt 

counts and resource type being accessed. If there is an answer 

recorded for one or multiple subparts in the first time slice, the 

model is told which subpart or subparts were answered and makes 

a prediction of the student’s response(s) based on the parameters 

learned from the training set. There will always be at least one 

response in each time slice except for in the case of the resource 

model where a time slice can represent a resource access. This 

prediction is logged along with the actual response. After 

prediction, the model is told what the student’s real responses 

were and the model applies the Bayesian update formula to 

calculate a posterior and then applies the learning transition 

formula to calculate the new prior for the next time slice. This 

processes is repeated until the end of the student’s response 

sequence and the next student is evaluated. Past answers of a 

student in the test set are used to predict their responses in the 

next time slice, however; student responses in the test set are not 

used to aid in prediction of other students in the test set. This form 

of testing, where data is utilized temporally within an instance, is 

not typical among classifier evaluations, however it is a principled 

way of evaluating student models since a real-world 

implementation of the model would have the benefit of a student’s 

past responses in order to predict future performance.  

3.3 Accuracy metric used 
The metric chosen to evaluate the goodness of model prediction 

performance is Area Under the Curve (AUC) also known as Area 

under the Receiver Operator Curve (ROC). The metric is also 

equivalent to A’ (A-prime). It measures a classifier’s ability to 

discriminate between binary classes, in our case - between 

incorrect and correct responses. It is an accuracy metric which 

ranges from 0 to 1, where 1 represents perfect discrimination 

between responses, 0 represents perfectly inaccurate 

discrimination (always the opposite of the real value), and 0.50 

represents classifier performance that is no better than chance. 

Approximations are often used to calculate AUC, such as 

approximate integration under the true positive vs. false positive 

plot of classifier performance, however the exact calculation 

provides a much improved intuition for the metric. To calculate 

AUC exactly: enumerate every possible pairing of positive and 

negative examples (#positive examples * #negative examples). 

For each pair, check if the classifier’s prediction of the positive 

example is higher or equal to the negative example. The AUC is 

the percentage of the pairings in which this is true. The AUC 

metric is therefore a type of ranking metric. So long as all positive 

class predictions are higher than negative class prediction, a 

perfect AUC score will be achieved. Deviations from this perfect 

ranking result in lower AUC. This evaluation makes the AUC 
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metric favorable for detecting differences between two models’ 

ability to discriminate between a correct and incorrect answer.  

We calculated AUC for each problem by comparing all predicted 

responses to the actual responses to subparts of the problem. Since 

the models in our studies are primarily being used to study 

learning and performance phenomenon in the aggregate, we used 

this evaluation instead of the equally employed evaluation of 

averaging over student AUCs per problem [5]. The per student 

evaluation is more appropriate when a model’s performance at the 

individual student mastery prediction task is of primary concern.  

4. Results 
Summarized cross-validated prediction results of the four models; 

basic, count, idem, and idem count, are presented in this section 

for the three problem types; homework, lecture, and exam. In 

addition to predicting our 2,000 sampled students, the models are 

also evaluated on a smaller 200 student sample to test the 

reliability of the results with less data. These results are 

summarized in the next subsection. An analysis of the count 

model parameters is presented in section 4.2 followed by a deeper 

analysis of the IDEM model in section 4.3. A two-tailed paired t-

test over problems was used to test if the difference in AUC 

scores between models was statistically reliably different. 

4.1 All results and training using less data 
A review of the models, their salient features, and number of 

parameters is shown in Table 2. Results of predicting the 3 

problem types with the four models with sample of 200 and 2,000 

students are shown in Figure 4. We will first discuss the results of 

evaluating the 2,000 student sample. 

Table 2. Model name, parameters, and description addressing 

how the challenges described in section 2 were addressed. 

Model  Description 

basic Lack of KC model addressed by defining problems as 

KCs and their subparts as questions of the KC. Retrofit 

BKT model to allow responses to multiple questions in 

a single time slice.  

parameters = 4 

count Basic model extended to capture possible variation in 

information gained from responses due to unpenalized 

multiple answer attempts. 

parameters = 2+2·(#counts) 

idem Basic model extended to account for variation between 

questions within a KC (subparts within a problem). 

parameters = 2+2·(#subparts) 

idem 

count 

IDEM model with multiple attempt extension. 

parameters = 2+2·(#subparts) ·(#counts) 

 

Figure 5. Cross-validated AUC results of the four models by 

problem type and amount of student data used. 

The basic model scored an AUC of 0.6451 on homework, 0.5279 

on lecture problems, and 0.5355 on exams. The homework score 

rivals scores achieved applying BKT to Cognitive Tutor (0.6457) 

and ASSISTments (0.6690) data [3]; however, the lecture and 

exam scores are not far above the performance of random chance. 

A potential upper bound benchmark for the model results 

presented is 0.7693, achieved in ASSISTments using a blended 

combination of classifiers [5].  

Accounting for different information gain depending on attempt 

count (count model) resulted in a small but statistically significant 

gain in the homework (+0.0167 AUC, p = 0.008) but no 

statistically significant change in lecture or exam prediction 

performance.  

Allowing for individual item guess and slip parameters (idem 

model) to account for differences among questions in our 

problem-subpart KC model resulted in the largest and most 

significant improvement among models. Performance improved in 

homework (+0.0368 AUC, p = 0.002), lecture problems (+0.0681 

AUC, p = 0.013), and most prominently in exams (+0.1220 AUC, 

p < 0.001).  

Adding the count extension on top of the idem model did not 

result in any statistically significant performance improvement.  

Evaluation of all models using 1/10th the number of users resulted 

in the same relative model performance trends as with the 

complete sample. This gives us confidence in the reproducibility 

of the results. Overall predictive performance with the smaller 

sample decreased most in exam prediction, followed by lecture 

and homework.  

The early stage resource model failed to show gains. In fact, while 

better than the basic model, it was statistically significantly lower 

performing than the idem model it was extended from (-0.009 

AUC, p = 0.008).  

4.2 Count model 
There was no effect in modeling attempt count in exams, perhaps 

because exam attempts were limited to three. There was also no 

effect on lecture sequence problems, possible because lecture 

problems are ungraded and students make fewer attempts. 

However, a small improvement was found on homework, where 

the most multiple attempt behavior is observed. 

We look at the guess and slip parameters of the count model for 

each answer attempt count to observe at which attempt the most 

information is being gained. We averaged the learned guess and 

slip values over the 5 training folds and found that slip stayed 

almost stationary (+/- 0.02) around its initial parameter value 

0.45
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while the guess value precipitously declined with attempt count. 

The average guess values for each homework problem are plotted 

in Figure 6. 

 

Figure 6. Learned guess parameters at each attempt count for 

problems in the homework. 

A lower guess value means that the model can gain more 

confidence that the student knows the KC after observing a 

correct answer. Higher average guess values on the first attempt 

than the 6th attempt could suggest that students who struggle for 

longer before answering correctly are more likely to know the 

KC. Alternatively, lower guess values with attempt counts could 

simply be returning the student to the same probability of 

knowledge as when he began the sequence (which had been 

lowered due to consecutive incorrect answers). 

4.3 Item difficulty model (IDEM) 
The IDEM model accounted for a large amount of additional 

variance on top of the basic model, particularly on exam questions 

and least so on homework. Assuming that the 15 exam problems 

(midterm + final) were drafted to cover the same space of material 

as the 37 homework problems, it is possible that there was a 

higher within-problem variance among exam problem than 

homework problems, explaining the more dramatic improvement 

in modeling individual questions in exams over homework. 

Individual exam, lecture, and homework problem performance is 

shown in Figures 7, 8, and 9 respectively. 

 

Figure 7. Individual model performance on each exam problem.  

 

Figure 8. Individual model performance on each lecture problem 

 

Figure 9. Individual model performance on each homework. 

5. Contribution 
We have presented a first foray into applying a model of learning 

to a MOOC. We identified three challenges to model adaptation 

and found that modeling variation in question difficulty resulted 

in the largest performance gain given our definition of KC. While 

our KC definition as problem with subparts as members is not 

ideal for measuring learning throughout the course, it nevertheless 

resulted in AUC performance accuracy rivaling that of prediction 

within systems with subject matter expert defined KC models. 

While we elucidated the potential for knowledge discovery given 

the unique variation in resource access in MOOC data, much 

work is left to demonstrate that this information can be seized on 

to produce more accurate results. This raises the question of how 

the efficacy of resources generalizes and the contexts and 

background information that needs to be considered to identify 

what works and for whom. Our solutions to the first two 

challenges, of lack of a KC model and multiple unpenalized 

attempt counts, will serve as an initial foundation for an efficacy 

assessment framework for MOOCs. 
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