
Adapting Bayesian Knowledge Tracing to a Massive Open
Online Course in edX

Zachary A. Pardos, Yoav Bergner, Daniel T. Seaton, David E. Pritchard
Massachusetts Institute of Technology

77 Massachusetts Ave.
Cambridge, MA 02139

{pardos, bergner, dseaton, dpritch}@mit.edu

ABSTRACT

Massive Open Online Courses (MOOCs) are an increasingly

pervasive newcomer to the virtual landscape of higher-education,

delivering a wide variety of topics in science, engineering, and the

humanities. However, while technological innovation is enabling

unprecedented open access to high quality educational material,

these systems generally inherit similar homework, exams, and

instructional resources to that of their classroom counterparts and

currently lack an underlying model with which to talk about

learning. In this paper we will show how existing learner

modeling techniques based on Bayesian Knowledge Tracing can

be adapted to the inaugural course, 6.002x: circuit design, on the

edX MOOC platform. We identify three distinct challenges to

modeling MOOC data and provide predictive evaluations of the

respective modeling approach to each challenge. The challenges

identified are; lack of an explicit knowledge component model,

allowance for unpenalized multiple problem attempts, and

multiple pathways through the system that allow for learning

influences outside of the current assessment.

Keywords

Probabilistic Graphical Models, Bayesian Knowledge Tracing,

MOOC, Resource model, edX

1. INTRODUCTION
Massive Open Online Courses (MOOCs) are a quickly emerging

modality of learning in higher-education. They consist of various

learning resources, often lecture videos, etexts, online office

hours, assessments which include homework and exams, and have

a specific time in which they begin and end, often corresponding

closely to that of their residentially offered counter-parts. While

the efficacy of MOOCs compared to their residential offerings is

an open question; from the viewpoint of educational research,

MOOCs provide several substantial advantages, most notably the

detailed digital trail left by students in the form of log data and the

size of the student cohorts, which are often several orders of

magnitude larger than typical on-campus-only offerings.

Unlike Intelligent Tutoring Systems (ITS), MOOCs do not

currently provide tutorial help on demand at the points of need;

instead, the knowledge is self-sought and supplied by a

redundancy of information across various types of resources

resulting in a variety of student selected resources and pathways

through the system. This rich data provided by MOOCs presents

an opportunity to investigate the efficacy of student behavior

under varying conditions; however, MOOCs currently lack a

model of learning with which to instrument this exploration. In

this paper we will show how existing learner modeling techniques

based on Bayesian Knowledge Tracing can be adapted to the

inaugural course, 6.002x: circuit design, on the edX MOOC

platform. We identify three distinct challenges to modeling

MOOC data in section 2, followed by a description of our

evaluation methodologies in section 3, and finally results of the

predictive evaluations of the respective modeling approach to

each challenge in section 4.

1.1 Anatomy of the MOOC
The inaugural course on the edX platform, 6.002x (Spring 2012),

was a 14 week-long online course featuring video lectures in

weekly sequences interspersed with lecture problems, an online

textbook, a discussion forum, and a course wiki. The web

interface for the course is shown in Figure 1. While the sequence

of videos and problems is suggested in the form of a timeline at

the top of the interface, the student can take any path through the

material they choose including skipping or revisiting content.

Figure 1. The interface for the 6.002x MOOC on edX. This

screenshot shows a student answering a problem that is part of the

Week 1 lecture sequence.

Student grades were based on 12 homework assignments and 12

virtual labs (weighted 15% for each category, with unlimited

answer attempts allowed), a midterm and a final exam (30% and

40% respectively, with 3 attempts allowed). Although lecture

problems did not count towards the grade, they were still marked

correct and incorrect, with instant feedback as given on the

homeworks. There were 289 scored elements (i.e. counting

problem subparts) in 104 lecture sequence problems, 197 in 37

homework problems, 26 in 5 midterm problems and 47 in 10 final

exam problems. The homework interface and scoring mechanism

had some nuances that deserve elaboration.

Weekly homework assignments consisted of several problems

which were all displayed on a single web page. A typical problem

consisted of a figure plus several answer field “subparts” that

prompted the user for input. Correctness feedback would be

shown to the right of the answer fields in the form of a red “X” for

incorrect (or blank answers) and a green checkmark for correct

answers. This feedback was displayed after the student clicked the

problem’s "check" button, which simultaneously checked all

answer fields within the problem. Students could answer the

subparts in any order they chose however several problems’

subparts required the incorporation of answers from a previous

subpart. If a student answered all the subparts before their first

“check”, the order in which she answered the subparts was not

known, however many students elected to click the check button

after each consecutive answer. Unlike most ITSs, homework was

scored based on the last answer entered by the user instead of the

first.

1.2 Dataset
The course drew 154,000 registrants, however; only 108,000

entered the course with around 10,000 completing the course

through the final. Among those, 7,158 received a certificate for

having earned at least a 60% weighted average. Our dataset

consisted of 2,000 randomly chosen students from the certificate

earners. A further reduction of the dataset was made by randomly

selecting ten problems (and their subparts) from each of the three

types of assessments; homework, lecture sequence, and exam

problems.

The data for this course originated from JSON log files produced

on the Amazon EC2 cloud, where the edX platform is hosted. The

original log files were separated out into individual user files and

the JSON records were parsed into a human readable time series

description of user interaction with components of the MOOC.

The final data preparation step compiled an event log by problem,

consisting of one line per student event relevant to that problem.

This included time spent on the event, correctness of each subpart,

when the student entered or changed an answer, the attempt count

of that answer, and resources accessed by the student before and

between responses. An example of this data format is shown in

Table 1.

Table 1. Example of the event log format of our distilled dataset

User Res Time Resp1 Resp2 Count1 Count2

9 video 2m 30s - - - - - - - -

9 answer 10m 5s correct correct 1 1

10 book 4m 41s - - - - - - - -

10 book 40s - - - - - - - -

10 answer 20s incorr. - - 1 - -

10 answer 15s incorr. - - 2 - -

10 answer 1m 8s incorr. incorr. 3 1

10 answer 28s - - correct - - 2

10 video 2m 10s - - - - - - - -

10 answer 6s correct - - 4 - -

1.3 Bayesian Knowledge Tracing
Knowledge Tracing (KT) [1] comes from the motivation to

implement mastery learning [19], where every student is allowed

to learn skills at his or her own pace and does not continue on to

more complex material until mastery of pre-requisites has been

achieved. It is based on a simplification of the ACT-R theory of

skill acquisition [2] and is tasked with making this inference of

mastery in the Cognitive Tutors, among other ITS. To achieve this

end, simpler mastery criterion exist such as N-correct in a row to

master, which is used by the ASSISTments Platform in their skill

builder problem sets [3] and in the Khan Academy tutor where the

term proficiency is used instead of mastery [4]. In a Cognitive

Tutor, acquirable knowledge, whether declarative or procedural, is

defined by fine-grained atomic pieces called Knowledge

Components (KCs), typically defined by a subject matter expert.

Answer steps in the tutor are tagged with these KCs and a

student’s past history of responses indicates his or her level of

mastery of the KC. In this context, mastery is inferred to have

occurred when there is a high probability (usually >= 0.95) that

the KC is known by the student.

The initial KT model was not introduced as a Bayesian model;

however, its formulas were found [6] to be perfectly represented

by a Dynamic Bayesian Network [20], which has become the

standard representation referred to as Bayesian Knowledge

Tracing (BKT). The standard BKT model is defined by four

parameters; prior knowledge p(Lo)
1, probability of learning p(T),

probability of guessing p(G), and probability of slipping p(S).

Based on these parameters, inference is made about the student’s

probability of knowledge at time opportunity n, p(Ln). The

parameters and inferred probability of knowledge can also be used

to predict the correctness of a student response with:

 () () () () ()

KCs vary in difficulty and amount of practice needed to master on

average, so values for these parameters are KC dependent and can

be fit to training data such as log data from a previous cohort of

students. Parameter fitting is often accomplished using

Expectation Maximization (EM) or a grid-search of the

parameters that maximizes a loss function such as sum of squared

residuals of the predicted probability of a correct answer and the

observed correctness. Neither fitting procedure has proved

consistently superior to the other [5, 21], however; grid-search,

while faster at fitting the basic BKT model, grows exponentially

with the number of parameters which is a concern for extensions

to BKT with higher parameterization. With both methods of

parameter fitting, the objective is to define parameters that result

in a projection of performance that best matches the observed

data, which is the students’ temporal sequence of correct and

incorrect responses to questions of a particular KC.

The use of Knowledge Tracing has two stages, the stage in which

the four parameters are learned, and the stage where an individual

student’s knowledge is being inferred from their responses.

During the inference stage, the probability of knowledge at time n,

given an observation, is calculated from a student’s response with

the following when a correct response is observed:

 ()
 () ()

 () () () ()

And with the following when an incorrect response is observed:

 ()
 () ()

 () () () ()

The p(Ln) on the right side of the formula is the prior probability

of knowledge at that time, while p(Ln|Evidencen) is the posterior

probability of knowledge calculated after taking an observation at

that time into account. Both formulas are applications of Bayes

Theorem and calculate the likelihood that the explanation for the

observed response is that the student knows the KC. Since the

student will be presented with feedback, there is a chance to learn.

The probability the student will learn the KC from the opportunity

is captured by this formula which calculates the new prior after

adding in the probability of learning:

 () () ()
 ()

These formulas are used in the task of determining mastery,

however; this model of knowledge has been extended to serve as a

1 The name “P(Lo)” was used to denote the prior parameter in [1].

In a BKT model, this is symbolically equivalent to p(L1).

platform to study learning phenomenon [7, 8, 9]. It is this capacity

for discovery that we aim to enable in MOOCs by adapting BKT

approaches.

2. Model Adaptation Challenges
In order to build a foundation for measuring learning phenomena

in the MOOC, several differences between MOOCs and

Intelligent Tutoring Systems need to be addressed. The first is the

lack of a subject matter expert mapping of the KCs associated

with questions in the system. The second challenge is the attempt-

until-correct scoring of the homework and lecture sequence

problems. Lastly, we will address the open interface of the virtual

learning environment which allows for users to take different

pathways through the course which influences learning rates

within a KC differently depending on path.

2.1 Lack of a KC model
The term “learning” can have broad meanings, however; in

mastery contexts it is referred to with respect to a particular skill,

or knowledge component being acquired. The mapping of these

skills to questions, commonly referred to as a Q-matrix [10], as

well as the enumeration of the skills, often comes from a subject

matter expert. These skills have been referred to as cognitive

operations in the psychometrics literature [11] and the processes

of identification of skills is commonly referred to as cognitive task

analysis in the context of ITS [12] and expert systems. Learning

curves analysis [13], a KC mapping evaluation technique, asserts

that evidence of a good skill mapping is a monotonically

decreasing error rate across opportunities to answer questions

within a skill. Similarly, fluency is expected to increase

(decreasing time to solve) across correct answers to a particular

skill. A unidimensional view of questions within a MOOC or a

subject such as Geometry, for instance, would result in a noisy

performance and fluency plot since error rates and response times

would jump as soon as new topic material was introduced in the

curriculum.

While subject matter expert defined knowledge components or

learning objectives are planned for select future MOOC offerings,

they are not common and do not exist in the 6.002x course data

used in this paper. Therefore, our goal was to utilize elements of

the course structure to inform a mapping of KCs to questions. We

chose to leverage the problem and subpart structure of

assignments, where the problem itself would serve as the KC and

its subparts would be the questions belonging to the KC. The

rationale for this choice was that the professor of the course often

has a particular concept in mind that they wish to tap with each

problem. Performance on the subparts is evidence of the student

grasping this concept. The benefit to this type of mapping is that it

is domain agnostic and can be used as a baseline KC model for

any MOOC. The drawback is that it does not allow for

longitudinal assessment of learning over more than one week

since answers to a given KC will only occur within a problem in a

particular week’s assignment. Reduced model fit is another

drawback as Corbett & Conrad [14] evaluated a similar superficial

mapping of questions to course problem structure and found that

this indeed sacrificed achieving more systematic, smother learning

curves. Nevertheless, we believe this mapping is a reasonable start

which allows for phenomenon to be studied within a problem

(which we coin “problem analytics”) and the methods and models

described here can be applied with a different KC model swapped

in, derived by a subject matter expert, inferred from the data, or a

hybridization of the two [15].

2.1.1 Basic model definition

Figure 2. The basic model – a retrofit BKT model to capture

answers to multiple questions in a single time slice and using

homework problem as the KC. The number of parameters in this

model is:

Our most basic retrofitting of the BKT model to the MOOC is

shown in Figure 2. In this model, which we will refer to as the

“basic” model, the homework problem is the latent knowledge, K,

and the observed questions are the subparts of the homework

problem. When student knowledge is in the learned state this

means the student has the knowledge required to answer all of the

subparts. Whereas traditional application of BKT has only a single

observed random variable causally linked to from the latent

variable, in this model we had to accommodate for observation of

multiple subpart observations at once. For example, these are the

calculation steps for inferring the probability of knowledge at the

second time slice when a student answers subparts one and two

incorrectly on the first click of the problem check button and the

third subpart correctly on the second click of the problem check

button (leaving parts one and two unchanged).

First, the posterior is calculated given an incorrect answer to the

first subpart: ()
 () ()

 () () () ()

Next, the posterior is updated again given an incorrect answer to

the second subpart:

 ()
 () ()

 () () () ()

Steps one and two are interchangeable, including when correct

and incorrect responses are observed.

The prior for knowledge at the second time slice is then calculated

by applying the probability of learning to the posterior:

 () ()

 () ()

Finally, the posterior probability of knowledge at the second time

slice is calculated given the observation of a correct answer on the

third question: ()
 () ()

 () () () ()

2.2 Multiple unpenalized answer attempts
The Cognitive Tutors allow for multiple answer attempts, as does

the ASSISTments Platform, however; the scoring policy for those

systems is to score only the first response to each question and

students are aware of this policy. The assumption is therefore that

the most informative response is the first response and in a

standard application of BKT, only the first responses to questions

are used to train and update the model. In the MOOC, three

responses are allowed on the exam problems and unlimited

responses on the homework and lecture sequence problems. The

scoring policy for all problems is to score the last response. Since

Model Parameters
p(L0) = Probability of initial knowledge
p(G) = Probability of guess
p(S) = Probability of slip

Node representations
K = Knowledge node
Q1..n = Question nodes

K

p(L0)

p(G)

p(S)

Basic Model

Node states
K , Q = Two state (0 or 1)

K

p(T)

Q1 Q2 Q3 Q1 Q2 Q3

problem sub-parts

students are aware of this policy, it cannot be assumed that the

most informative response is the first. For example, some students

may decide to employ a quick heuristic on their first attempt

instead of thinking through the problem as was observed among

male users in an intro physics course [16]. Using only the last

response is also problematic as these responses tend to have a

very high percent correct, at least in homework and lecture

problems, and a large amount of information would be lost in

trying to model learning with only these responses. It is therefore

an open and empirical research question as to where the most

information exists in student answer attempts and so we define a

model that allows the data to give us the answer. Past approaches

have used regression to set BKT guess and slip parameters based

on a host of contextual features [22], however these models, by

admission, have not considered multiple attempts within a

question.

Studies on test data where students are allowed multiple

unpenalized attempts suggest that more information is contained

in later responses (higher IRT discrimination) [17]. In addition to

evaluating if a BKT model with attempt count information

outperforms the basic BKT model in predictive accuracy, we also

inspect the parameters of the model for each attempt count to

observe if the trends seen in past studies reemerge in our data.

2.2.1 Count model definition

Figure 3 The count mode – conditioning question guess and slip

on answer attempt count to allow information gained from

responses to vary. The number of parameters in this model is:

 ()

The guess and slip parameters of the model dictate the amount of

information gained about the latent variable from a correct or

incorrect response; a guess and slip of zero in the Bayesian update

calculation would mean that the value of the responses was 100%

reflective of the binary state of the latent variable, while a guess

and slip of 0.50 represents the maximum uncertainty regarding a

response. Allowing for a different guess and slip parameter

depending on attempt count therefore allows the model to capture

a differing amount of information gained at each attempt. This is

our modeling approach to multiple unpenalized attempts which

we will refer to as the “count” model.

In the model, shown in Figure 3, count nodes, which are

observable random variables, are added for every subpart since

users can be on different attempt counts for different subparts.

The size of the count nodes correspond to the number of attempt

counts chosen to model. Inspection of the dataset showed that

only ~4% of attempts were 5th attempts, therefore the size of the

attempt count node was set to 6 which was also the count used for

any attempt count over 6. This setting was fairly ad-hoc and could

be improved upon by setting based on empirical evaluation. While

the attempt count node contains a prior parameter, this was not

counted as a free parameter but was instead fixed to the observed

distribution of count attempts in the training data.

2.2.2 Allowing for difficulty/information gain to

differ among subparts
Recent work has extended BKT to allow for different guess and

slip parameters to be modeled per item in a model coined KT-

IDEM (Item difficulty effect model) [3]. In ASSISTments, each

problem template within a skill builder problem set was allowed

to fit different guess and slip parameters, and in the Cognitive

Tutor this was done at the level of the problem, where all steps of

a given KC shared a guess/slip with one another within a problem

but steps of the same KC that appeared in a different problem

could fit different guess and slip parameter values. In both

systems, prediction accuracy was improved by ~15% when there

was ample data to fit each set of parameter (6 or more data points

per parameter). This can be seen as allowing for variation in

question difficulty among questions in a KC, or in the case of the

Cognitive Tutor, allowing for variation in KC performance

depending on problem context. It can also be interpreted as

modulating the information gained about the latent variable

depending on the question in much the same way as the count

nodes in the count model modulate the information gained about

the latent variable from responses depending on attempt count.

This item parameterization technique was applied to our MOOC

data in the basic and count model, creating two additional models

referred to as the “idem” and “idem count” model. In the idem

model, the number of parameters increases to:
() and in the idem count model, increases to:

 () ().

2.3 Multiple pathways through the system
In many virtual learning environments, particularly in K-12,

students complete one set of problems at a time and their path

through the system is either fixed or the interface inhibits

switching between problem sets. In the 6.002x MOOC, multiple

problems are displayed on a page and students are frequently

observed returning to a problem after answering another [18].

Besides learning from other problems, the redundancy of

information found among the book pages, videos, wiki, and

discussion board also allow the student to self-select his or her

own path to acquiring the knowledge needed to complete the

assignments. This means that influences on learning can come

from a variety of sources in the learning environment, unlike most

ITS where the learning can be assumed to come from feedback

and tutorial help provided within the problem at hand. While this

poses a challenge, in terms of capturing the variance in student

learning, it also provides a rich trail of information and variety of

pathways through the system that can be data mined and modeled.

Table 1 in section 1.2 illustrates how students can weave in and

out of resources while answering assignment questions. It shows

how one student answered a question correct after viewing a video

and another student answered the same question incorrect until

encountering a video, after which the hypothetical student

answered the question correct. The consideration of resource

influence on learning can be posed as a credit/blame inference

problem, where, depending on problem answers and resource

access in the aggregate, resources can be credited with learning or

blamed for being ineffective. This model is at the very early

stages of research and considers only resource type, which can be

one of the following seven types: book, video, wiki, discussion,

tutorial, answer to another problem, and answer to the problem at

Model Parameters
p(L0) = Probability of initial knowledge
p(T) = Probability of knowledge acquisition
p(G|C1..n) = Probability of guess given C
p(S|C1..n) = Probability of slip given C

Node representations
K = Knowledge node
Q1..n = Question nodes
C1..n = Count nodes

K

p(L0)

p(G|C n)

p(S|C n)

Multiple Attempt
Count Model

Node states
K , Q = Two state (0 or 1)
C = Multi state (1 to m)

K

p(T)

Q1 Q2 Q3 Q1 Q2 Q3

C1 C2 C3 C1 C2 C3

hand. Up to the last five resource access events before a response

are used, earlier events are discarded.

2.3.1 Resource model definition

Figure 4. The resource model – based off of the idem model with

resource access information added and hypothesized to influence

learning. The number of parameters in this model is:
() ()

The resource model was built from the idem model without

attempt count taken into consideration. The model is the same

except for the addition of the observable resource node, R, which

conditions the learning parameter, p(T|R). At each time slice, the

observable, R, is given the value corresponding to the current

resource type being accessed. This model generalizes the idem

model and can be made mathematically identical by removing all

resources types except for “answer to the problem at hand”, which

represents the standard learning parameter capturing the benefit of

feedback. When a non-problem resource is accessed, the R node

gets the value of that resource type and a time slice with no

question answer input is used.

3. Training and Evaluation Methodology
All five models (basic, count, idem, idem count, and resource

model) were evaluated with a 5-fold student level cross-validation

where the 2,000 students and their respective data were randomly

assigned to one of five bins. Models were trained on the data in

four bins and predictions were made on the data of the students in

the fifth bin. This training/testing procedure was repeated five

times, such that each bin was used once as the testing set. This

evaluation procedure was run for all models on the 10 lecture,

homework, and exam problems sampled in the dataset with the

exception of the resource model which was only run on the

homework problems. The premise of a cross-validation is to

investigate if the variance captured by the models generalizes to

held out data. If it does, indicated by improved predictive

performance over a simpler model, the assumption is that the

variance captured by the more complex model is real and

reproducible. Ideally, training can be done on a previous course

cohort and tested on the data of a cohort from a subsequent

offering of the course. In the absence of this kind of training/test

data, student level cross-validation serves as a strong substitute.

3.1 Model training details
The models used Expectation Maximization (EM) to fit

parameters to the training sets with the same set of ad-hoc initial

parameter values used for all models: p(Lo) = 0.20, p(T) = 0.10,

p(G) = 0.10, p(S) = 0.15. Due to the data being restricted to a

limited number of computing resources at the time of evaluation,

a low maximum EM iteration count of 5 was set to make the

cross-fold evaluations tractable in the time period allotted. Each

cross-validation fold for homework took on average 12.8 hours of

compute time per model running on an Intel i5 2.6Ghz machine.

The lowest compute time model was the basic model with 10.7

hours per fold and the highest was the resource model with 15.1

hours per fold. Lecture and exam problems took 1/10th the time to

evaluate suggesting that more answer events occurred in the

homework. For future runs, more tractable compute times could

be sought with a more aggressive filtering of homework students

with excessively long attempt counts or by cutting off response

sequence at a particular count.

3.2 Model prediction detail
After the parameters of the model are trained, each student answer

in the test set is predicted one student at a time and one time slice

at a time for that student. This prediction procedure is identical to

previous literature evaluating KT with the difference of

accommodating for multiple responses per time slice. Walking

through the prediction procedure; response data for the first

student in the test set is loaded. On the first time slice, observable

evidence, other than the response, is entered such as attempt

counts and resource type being accessed. If there is an answer

recorded for one or multiple subparts in the first time slice, the

model is told which subpart or subparts were answered and makes

a prediction of the student’s response(s) based on the parameters

learned from the training set. There will always be at least one

response in each time slice except for in the case of the resource

model where a time slice can represent a resource access. This

prediction is logged along with the actual response. After

prediction, the model is told what the student’s real responses

were and the model applies the Bayesian update formula to

calculate a posterior and then applies the learning transition

formula to calculate the new prior for the next time slice. This

processes is repeated until the end of the student’s response

sequence and the next student is evaluated. Past answers of a

student in the test set are used to predict their responses in the

next time slice, however; student responses in the test set are not

used to aid in prediction of other students in the test set. This form

of testing, where data is utilized temporally within an instance, is

not typical among classifier evaluations, however it is a principled

way of evaluating student models since a real-world

implementation of the model would have the benefit of a student’s

past responses in order to predict future performance.

3.3 Accuracy metric used
The metric chosen to evaluate the goodness of model prediction

performance is Area Under the Curve (AUC) also known as Area

under the Receiver Operator Curve (ROC). The metric is also

equivalent to A’ (A-prime). It measures a classifier’s ability to

discriminate between binary classes, in our case - between

incorrect and correct responses. It is an accuracy metric which

ranges from 0 to 1, where 1 represents perfect discrimination

between responses, 0 represents perfectly inaccurate

discrimination (always the opposite of the real value), and 0.50

represents classifier performance that is no better than chance.

Approximations are often used to calculate AUC, such as

approximate integration under the true positive vs. false positive

plot of classifier performance, however the exact calculation

provides a much improved intuition for the metric. To calculate

AUC exactly: enumerate every possible pairing of positive and

negative examples (#positive examples * #negative examples).

For each pair, check if the classifier’s prediction of the positive

example is higher or equal to the negative example. The AUC is

the percentage of the pairings in which this is true. The AUC

metric is therefore a type of ranking metric. So long as all positive

class predictions are higher than negative class prediction, a

perfect AUC score will be achieved. Deviations from this perfect

ranking result in lower AUC. This evaluation makes the AUC

Model Parameters
p(L0) = Probability of initial knowledge
p(T|R) = Probability of learning given R
p(G1..n) = Probability of guess per subpart
p(S1..n) = Probability of slip per subpart

Node representations
K = Knowledge node
Q1..n = Question nodes
R = Resource node

K

p(L0)

P(Gn)

P(Sn)

Resource model

R

K

p(T|R)

R

Q1 Q2 Q3 Q1 Q2 Q3Node states
K , Q = Two state (0 or 1)
R = Multi state (1 to M)
(Where M is the number of unique resources in the training data)

metric favorable for detecting differences between two models’

ability to discriminate between a correct and incorrect answer.

We calculated AUC for each problem by comparing all predicted

responses to the actual responses to subparts of the problem. Since

the models in our studies are primarily being used to study

learning and performance phenomenon in the aggregate, we used

this evaluation instead of the equally employed evaluation of

averaging over student AUCs per problem [5]. The per student

evaluation is more appropriate when a model’s performance at the

individual student mastery prediction task is of primary concern.

4. Results
Summarized cross-validated prediction results of the four models;

basic, count, idem, and idem count, are presented in this section

for the three problem types; homework, lecture, and exam. In

addition to predicting our 2,000 sampled students, the models are

also evaluated on a smaller 200 student sample to test the

reliability of the results with less data. These results are

summarized in the next subsection. An analysis of the count

model parameters is presented in section 4.2 followed by a deeper

analysis of the IDEM model in section 4.3. A two-tailed paired t-

test over problems was used to test if the difference in AUC

scores between models was statistically reliably different.

4.1 All results and training using less data
A review of the models, their salient features, and number of

parameters is shown in Table 2. Results of predicting the 3

problem types with the four models with sample of 200 and 2,000

students are shown in Figure 4. We will first discuss the results of

evaluating the 2,000 student sample.

Table 2. Model name, parameters, and description addressing

how the challenges described in section 2 were addressed.

Model Description

basic Lack of KC model addressed by defining problems as

KCs and their subparts as questions of the KC. Retrofit

BKT model to allow responses to multiple questions in

a single time slice.

parameters = 4

count Basic model extended to capture possible variation in

information gained from responses due to unpenalized

multiple answer attempts.

parameters = 2+2·(#counts)

idem Basic model extended to account for variation between

questions within a KC (subparts within a problem).

parameters = 2+2·(#subparts)

idem

count

IDEM model with multiple attempt extension.

parameters = 2+2·(#subparts) ·(#counts)

Figure 5. Cross-validated AUC results of the four models by

problem type and amount of student data used.

The basic model scored an AUC of 0.6451 on homework, 0.5279

on lecture problems, and 0.5355 on exams. The homework score

rivals scores achieved applying BKT to Cognitive Tutor (0.6457)

and ASSISTments (0.6690) data [3]; however, the lecture and

exam scores are not far above the performance of random chance.

A potential upper bound benchmark for the model results

presented is 0.7693, achieved in ASSISTments using a blended

combination of classifiers [5].

Accounting for different information gain depending on attempt

count (count model) resulted in a small but statistically significant

gain in the homework (+0.0167 AUC, p = 0.008) but no

statistically significant change in lecture or exam prediction

performance.

Allowing for individual item guess and slip parameters (idem

model) to account for differences among questions in our

problem-subpart KC model resulted in the largest and most

significant improvement among models. Performance improved in

homework (+0.0368 AUC, p = 0.002), lecture problems (+0.0681

AUC, p = 0.013), and most prominently in exams (+0.1220 AUC,

p < 0.001).

Adding the count extension on top of the idem model did not

result in any statistically significant performance improvement.

Evaluation of all models using 1/10th the number of users resulted

in the same relative model performance trends as with the

complete sample. This gives us confidence in the reproducibility

of the results. Overall predictive performance with the smaller

sample decreased most in exam prediction, followed by lecture

and homework.

The early stage resource model failed to show gains. In fact, while

better than the basic model, it was statistically significantly lower

performing than the idem model it was extended from (-0.009

AUC, p = 0.008).

4.2 Count model
There was no effect in modeling attempt count in exams, perhaps

because exam attempts were limited to three. There was also no

effect on lecture sequence problems, possible because lecture

problems are ungraded and students make fewer attempts.

However, a small improvement was found on homework, where

the most multiple attempt behavior is observed.

We look at the guess and slip parameters of the count model for

each answer attempt count to observe at which attempt the most

information is being gained. We averaged the learned guess and

slip values over the 5 training folds and found that slip stayed

almost stationary (+/- 0.02) around its initial parameter value

0.45

0.5

0.55

0.6

0.65

0.7

basic count idem idem_count

HW, LEC, EXAM (2000 & 200 samples) - AUC

HW (2000)

HW (200)

LEC (2000)

LEC (200)

EXAM (2000)

EXAM (200)

while the guess value precipitously declined with attempt count.

The average guess values for each homework problem are plotted

in Figure 6.

Figure 6. Learned guess parameters at each attempt count for

problems in the homework.

A lower guess value means that the model can gain more

confidence that the student knows the KC after observing a

correct answer. Higher average guess values on the first attempt

than the 6th attempt could suggest that students who struggle for

longer before answering correctly are more likely to know the

KC. Alternatively, lower guess values with attempt counts could

simply be returning the student to the same probability of

knowledge as when he began the sequence (which had been

lowered due to consecutive incorrect answers).

4.3 Item difficulty model (IDEM)
The IDEM model accounted for a large amount of additional

variance on top of the basic model, particularly on exam questions

and least so on homework. Assuming that the 15 exam problems

(midterm + final) were drafted to cover the same space of material

as the 37 homework problems, it is possible that there was a

higher within-problem variance among exam problem than

homework problems, explaining the more dramatic improvement

in modeling individual questions in exams over homework.

Individual exam, lecture, and homework problem performance is

shown in Figures 7, 8, and 9 respectively.

Figure 7. Individual model performance on each exam problem.

Figure 8. Individual model performance on each lecture problem

Figure 9. Individual model performance on each homework.

5. Contribution
We have presented a first foray into applying a model of learning

to a MOOC. We identified three challenges to model adaptation

and found that modeling variation in question difficulty resulted

in the largest performance gain given our definition of KC. While

our KC definition as problem with subparts as members is not

ideal for measuring learning throughout the course, it nevertheless

resulted in AUC performance accuracy rivaling that of prediction

within systems with subject matter expert defined KC models.

While we elucidated the potential for knowledge discovery given

the unique variation in resource access in MOOC data, much

work is left to demonstrate that this information can be seized on

to produce more accurate results. This raises the question of how

the efficacy of resources generalizes and the contexts and

background information that needs to be considered to identify

what works and for whom. Our solutions to the first two

challenges, of lack of a KC model and multiple unpenalized

attempt counts, will serve as an initial foundation for an efficacy

assessment framework for MOOCs.

REFERENCES

[1] Corbett, A. T., & Anderson, J. R. (1995), Knowledge tracing:

modeling the acquisition of procedural knowledge. User

Modeling and User-Adapted Interaction 4(4), 253-278.

[2] Anderson, J. (1993). Rules of the mind. Hillsdale, NJ:

Lawrence Erlbaum Associates

[3] Pardos, Z. & Heffernan, N. (2011) KT-IDEM: Introducing

Item Difficulty to the Knowledge Tracing Model. In

Konstant et al (Eds.) Proceedings of the 20th International

Conference on User Modeling, Adaptation and

Personalization (UMAP 2011). pp. 243-254.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6

P
ro

b
ab

ili
ty

 o
f

G
u

e
ss

Attempt count

Guess vs. Attempt count

HW1p1

HW2L3h1

L5K1

CSDamplifierModel

CSDamplifier

PhaseInverter

SeriesParallelInductors

ChargingAnInductor

ILCdelayedImpulse

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

basic count idem idem count

Exam performance - AUC

x0

x1

CommonGate

x4

x5

OpAmpFET

Noise

NIC

ScopeProbe1

TriodeAmplifier

0.45

0.5

0.55

0.6

0.65

0.7

0.75

basic count idem idem count

Lecture sequence performance - AUC

L1e3s

L3The1

L6e1

L6s19e1

L7s12e1

L8s12e1

L13InductorScale

L22tfQ

L23NonInvertingAmplifier

L24Generalization2

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

basic count idem idem count

Homework performance - AUC

HW1p1

HW2L3h1

L5K1

CSDamplifierModel

CSDamplifier

PhaseInverter

SeriesParallelInductors

ChargingAnInductor

ILCdelayedImpulse

[4] Gonul, F., & Solano, R. (2012). Innovative Teaching: An

Empirical Study of Computer Aided Instruction in

Quantitative Business Courses. Available at SSRN 2057992.

[5] Pardos, Z.A., Gowda, S. M., Baker, R. S.J.D., Heffernan, N.

T. (2012) The Sum is Greater than the Parts: Ensembling

Models of Student Knowledge in Educational Software.

ACM SIGKDD Explorations, 13(2)

[6] Reye, J. (2004). Student modelling based on belief networks.

International Journal of Artificial Intelligence in Education:

Vol. 14, 63-96.

[7] Beck, J., Chang, K. M., Mostow, J., & Corbett, A. (2008).

Does help help? Introducing the Bayesian Evaluation and

Assessment methodology. In Intelligent Tutoring Systems

(pp. 383-394). Springer Berlin/Heidelberg.

[8] Pardos, Z.A., Dailey, M. & Heffernan, N. (2011) Learning

what works in ITS from non-traditional randomized

controlled trial data. The International Journal of Artificial

Intelligence in Education, 21(1-2):45-63.

[9] Rau, M., Pardos, Z.A. (2012) Interleaved Practice with

Multiple Representations: Analyses with Knowledge Tracing

Based Techniques. In Proceedings of the 5th annual

International Conference on Educational Data Mining. Crete,

Greece. Pages 168-171

[10] Tatsuoka, K.K. (1983) Rule space: An approach for dealing

with misconceptions based on item response theory. Journal

of Educational Measurement, 20, 345-354.

[11] Spada, H., & McGaw, B. (1985). The assessment of learning

effects with linear logistic test models. Test design: New

directions in psychology and psychometrics, 169-193.

[12] Lovett, M. C. (1998). Cognitive task analysis in service of

intelligent tutoring system design: A case study in statistics.

In Proceedings of the Fourth Conference on Intelligent

Tutoring Systems. pp. 234-243. Springer-Verlag.

[13] Martin, B., Mitrovic, T., Mathan, S., & Koedinger, K.R.

(2011). Evaluating and improving adaptive educational

systems with learning curves. User Model User-Adap Inter

(2011) 21:249–283.

[14] Anderson, J. R., F. G. Conrad, and A. T. Corbett (1989) Skill

acquisition and the LISP Tutor. Cognitive Science, 13, 467-

505.

[15] Koedinger, K.R., McLaughlin, E.A., & Stamper, J.C. (2012).

Automated student model improvement. In Proceedings of

the Fifth International Conference on Educational Data

Mining. pp. 17-24.

[16] Kortemeyer, G. (2009). Gender differences in the use of an

online homework system in an introductory physics course.

Physical Review Special Topics-Physics Education

Research, 5(1), 010107.

[17] Attali, Yigal. "Immediate Feedback and Opportunity to

Revise Answers Application of a Graded Response IRT

Model." Applied Psychological Measurement 35.6 (2011):

472-479.

[18] Bergner, Y., Pardos, Z.A., Seaton, D., Pritchard, D.E. (under

review) Two steps forward one step back: analysis of out of

sequence problem checking behavior in the edX system.

Submitted to the 16th International Conference on Artificial

Intelligence in Education.

[19] Bloom, B. S. (1968) Learning for mastery. In Evaluation

Comment, 1. Los Angeles: UCLA Center for the Study of

Evaluation of Instructional Programs.

[20] Murphy, Kevin Patrick. (200) Dynamic bayesian networks:

representation, inference and learning. Diss. University of

California.

[21] Gong, Y., Beck, J.E., Heffernan, N.T., 2010. Comparing

Knowledge Tracing and Performance Factor Analysis by

Using Multiple Model Fitting Procedures. In Proceedings of

the 10th International Conference on Intelligent Tutoring

Systems, 35-44.

[22] Baker, R.S.J.d., Corbett, A.T., Aleven, V. (2008) Improving

Contextual Models of Guessing and Slipping with a

Truncated Training Set.Proceedings of the 1st International

Conference on Educational Data Mining, 67-76.

