
Interaction Networks: Generating High Level Hints Based
on Network Community Clustering

Michael Eagle, Matthew Johnson, and Tiffany Barnes
The University of North Carolina at Charlotte

College of Computing and Informatics
9201 University City Blvd, Charlotte, NC 28223

{mjeagle, matjohns, tiffany.barnes}@uncc.edu

ABSTRACT
We introduce a novel data structure, the Interaction Net-
work, for representing interaction-data from open problem
solving environment tutors. We show how using network
community detecting techniques are used to identify sub-
goals in problems in a logic tutor. We then use those com-
munity structures to generate high level hints between sub-
goals. The preliminary results show that using network anal-
ysis techniques are promising for exploring and understand-
ing user data from open problem solving environments.

1. INTRODUCTION
This paper introduces a data structure for the analysis of
interaction-data collected from open problem solving envi-
ronments. This structure embeds meaningful information
into a complex network, which is subject to analysis through
network science techniques. We apply a method of network
community clustering to derive subgoals in problems. These
clusters allow us to derive high-level hints, which direct stu-
dents to subgoals in the open problems.

Other methods for modeling students, such as the Bayesian
knowledge tracing model [5] are difficult to apply to ill de-
fined domains, such as open problem solving tutors. First,
Bayesian knowledge tracing requires each interaction to be
labeled as correct or incorrect. Second, each interaction
needs to be assigned a single knowledge component. For
open procedural problems, both of these assumptions are
challenging. As each interaction represents a step towards
a goal, it is difficult to address the correctness of an indi-
vidual step. While errors in the application of actions can
be easily marked, errors in obtaining the correct solution
require special attention. The open nature of the environ-
ment makes it possible for each interaction to provide op-
portunities to apply several skills. Furthermore, the skills
needed for an interaction include action-application, action-
opportunity recognition, and problem-solving skill.

For these reasons, many of the traditional methods for data
mining on problem solving environment tutor data is either
non-applicable or difficult to structure in appropriate ways.
We propose using an Interaction Network as a method of
structuring tutor data from problem solving environments
and show one example of how this has been useful.

Next, we use the interaction network in a method for auto-
matically generating high level hints. This is an extension

of previous work where automated feedback was generated
from student data [2]. We extend that work by using net-
work community clustering on a interaction network derived
from student data; this allows us to generate higher level
hints based on derived subgoals. Automatically generated
hints have shown positive educational results [10], and have
been applied across domains [8].

2. PROBLEM SOLVING ENVIRONMENTS
The effect that the tutor has on how students solve problems
is important. While the pedagogical benefits of scaffolded
problems are well known, open problem solving environment
based tutors may encourage learning in higher ’levels’ of cog-
nitive domains [4]. For this work, we define problem solving
environments as non-scaffolded tutors, where students are
free to apply one of many different actions and are required
to complete many steps to solve a single problem, as in the
Deep Thought tutor [6].

One advantage to these types of environments, compared
to scaffolded problems, is that less time is required for the
authoring of problems, as scaffolding is less necessary. Also
there are several existing simulations and educational en-
vironments that were developed without intelligent feed-
back. Our goal is to provide data-driven techniques to auto-
matically generate intelligent feedback based on previously
recorded data from such environments.

3. INTERACTION NETWORK
In sequential problem solving environments a solution path
describes a sequence of state changes from a starting posi-
tion towards a desired end position. For this work we will
only consider discrete time environments with deterministic
state transitions. An interaction network is a data structure
designed to concisely describe the information contained in
a large number of such sequences. This structure is modeled
as a complex weighted network, in which information rele-
vant to educational data mining is encoded into the edges
and vertices. Interaction networks provide a structure on
which to perform data mining, and are also useful for visu-
ally displaying information via state diagram visualizations.
The interaction network, in terms of ACT-R, is primarily
concerned with the results of the Manual Control module
[1]. We mention this to make a distinction between the
Imaginal module, which contains steps the user makes in
internal cognition. That is, the interactions are empirical
observations between the subject and the tutor and do not
represent internal cognitive states which may occur between



recorded actions.

An interaction network is based on individual student-tutor
interactions, as recorded in the log file of the tutoring en-
vironment. We define an interaction, I, is a 5-tuple I =
(St, A., St+1, U, I), where

• St is the state at step t

• As is the action performed on St

• St+1 is the resulting state after A has been performed

• U is the unique case ID responsible for this interaction

• I is a set of additional information about the interac-
tion. For example, Itime would return a value for how
long this interaction took. Included here are Ierror,
which stores the error value, and Igoal, which is true if
this action resulted in a goal state.

A case represents an individual user of the tutoring system,
specifically a case is a ordered pair c = (U, I), where

• U is a unique identifier

• I is a set of additional information about the individ-
ual. For example, Ipretest would return a value for this
case’s pretest score.

Finally, we define the interaction network for a problem P
is as,

INP = (C, S,A, t, s, S0, G, IA,M), where

• C is a set of cases.

• S is the set of observed tutor program states

• A is the set of observed actions, which connect two
states

• s : A→ S and t : A→ S are two maps indicating the
source and target states of an action

• S0 is the starting state of the problem

• G is the set of goal states

• IA : A→ I is a map to the source set of Interactions

• M is the set of maps, which allow the lookup of rele-
vant state, action, and case information. For example:
MFreq : S → Frequency will map from the state x to
the frequency value for that state.

We model a solution attempt as a ordered set of interac-
tions. We use case to refer to individual students, as well
as student specific information. We create the interaction
network for a problem by conjoining the set of all the path
graphs. We use state to describe the state of the software
environment, representing enough information so the pro-
gram’s state could be regenerated in the interface. We use
actions to describe user interactions and their relevant pa-
rameters. We also store the set of all cases who visited any
particular state-vertex or action-edge, allowing us to count
frequencies and connect case specific information to the in-
teraction network representation.

This representation results in a sparse, weighted, directed,
labeled pseudograph, which can contain loops and cycles;
with states as vertices, directed action edges to connect the

Figure 1: An Interaction Network from the Deep Thought
data set. Error actions are shown as red edges, edge width
depicts frequency, green squares are goal states.

states, and cases that provide additional information about
states and edges. This representation allows us to build a
interaction network model from any system that logs inter-
actions in state, action, resulting-state tuples. This results
in a network graph which represents the interactions of a
large number of users in a relatively concise space.

4. THE DEEP THOUGHT TUTOR
We apply the interaction network to data from Deep Thought,
a propositional logic tutor in which students are tasked with
performing first-order logic proofs [6]. Students are given a
set of premises and a desired conclusion; the student must
then use the basic logic axioms to prove the conclusion. As
the student works through the proof, the tutor records each
interaction. We model the application of axioms as the ac-
tions. We model the state of the logic tutor as the conjoined
set of each premise and derived proposition.

For example a student starts at state A ∨ D,A → (B ∧
C),¬D ∧ E, where each premise is separated by a comma.
The student performs the interaction SIMP (¬D ∧ E), ap-
plying the simplification rule of logic to the premise ¬D∧E
and derives ¬D. This leads to the resulting-state of A ∨
D,A→ (B ∧C),¬D ∧E,¬D. Errors are actions performed
by students that are illegal operations of logic and the tu-
tor. For example: The student is in state A ∨ D,A →
(B ∧C),¬D∧E,¬D. The student performs the interaction
SIMP (A ∨ D) in an attempt to derive A. The resulting-
state would remain A ∨ D,A → (B ∧ C),¬D ∧ E,¬D, the
log-file would mark this edge as an error.

4.1 Working Backwards
Deep Thought allows students to work both forward and
backwards in the logic domain to solve problems [7]. Work-
ing backwards allows a student to select the goal premise and
use actions to change the conclusion by adding unjustified
propositions. Since students can solve a problem completely
by only a single direction or a hybrid approach, the size of
our state space is much larger than if only a single direc-
tion were possible, however this provides opportunities for



Figure 2: The Interaciton Network from figure 3 represented
as a cluster graph. This network is used for the high level
hinting process.

diverse problem solving techniques.

4.2 Data
We have six sections of student data from the year 2009,
between three professors. Students were required to solve
13 problems from in the Deep Thought tutor as part of the
coursework in a introduction to logic class. The problems
were generally solved in order, but students could access any
problem at any time. In total we have data for 303 students
who submitted 1454 attempts across 13 problems totaling
64677 interactions.

5. GENERATING HIGH LEVEL HINTS US-
ING NETWORK CLUSTERING

By formulating our data into an interaction network and
using network invariants and metrics, we theorized we could
identify sub-goals and in turn student strategies. We also
theorized that problems would have underlying structures
of sub-goals. We used the Girvan-Newman algorithm to
cluster our interaction networks [9]. This algorithm is used
to detect communities in networks, where a community has
dense node-node connectedness and the edges to nodes in
other communities are sparse. Since our data represents
interactions, states which are similar are clustered into the
same community. Performing similar actions will result in
similar states. Performing similar actions in varying orders
results in states which are more connected. This causes

Figure 3: An Interaction Network from Deep Thought with
clustering applied. This interaction network has nine clus-
ters. Green nodes are goal states, errors are denoted by red
looping edges. Blue edges are deletions where students re-
turned to their previous state. Node size and color is based
on node betweenness, and used for visual clarity.

similar interaction orders to be highly connected and result
in the same community. For each sub goal, sequences of
actions to reach those subgoals will be similar. Different
strategies will separate different subgoals into distinct sub-
populations, ie. communities. Since actions are defined by
edges and Girvan-Newman separates communities by edge-
betweenness, in our interaction network we are separating
communities based on dominating actions.

5.1 Cluster Graph
In order to generate high level hints, we first divide the
network into community clusters using the Girvan-Newman
algorithm. This allows us to create a cluster graph, where
the clusters are communities of states, highlighting impor-
tant nodes we will use as sub-goals, see figure 3. The clus-
ters can be interpreted as problem solving strategies. We
manually annotated each cluster based on the strategies we
observed the students using, see figure 2. We found the gen-
eral strategies of working forward and backwards, as well as
hybrid approaches.

To determine which hint a student receives we perform the
Bellman backup algorithm to assign values to the clusters,
similar to previous works by Stamper et al. [3]. Next, when
a student requests a hint, we first offer a high level hint
directing them to a different cluster, which represents the
student’s next sub-goal.

We treat each cluster as a node, with edges connecting clus-
ters, with the same weights as in the interaction network.
Each goal state is connected to a virtual exit-edge outside of
it’s original cluster. We assign positive values to the virtual
exit-edges. Other edges are assigned a cost, to incentive



shorter solution paths. We then perform Bellman backup
to generate cluster values, as is done by Stamper et al. [3]
with the key distinction of using the clusters rather than
using individual states. The Bellmen backup algorithm will
iterate until the cluster values converge, and we use these
values to provide our next cluster policy.

5.2 High Level Hints
By generating high level hints we can provide students with
hints towards sub-goals in the problem, suggesting different
strategies. We add two additional hints to Stamper’s hint
template, where the first two hints are based on strategies.
The first hint directs students to the connected node of the
’next’ cluster, if there are multiple out-degree edges from
the current cluster, we can offer multiple ’next’ clusters, so
the student can progress along their desired strategy. Since
strategies are at a higher level then individual steps, offering
multiple strategies is reasonable, whereas offering multiple
next steps is likely less beneficial. Students can request a
second hint; this hint is based off of the parameters required
to derive the first hint.

After that, if a student is unable to consider their high level
strategy, we provide local hints. These hints provide imme-
diate next steps towards the desired exit node of the current
cluster. This is done by setting the exit edges of the cur-
rent cluster with positive weight and performing Bellman
backup. These hints are provided using the method de-
scribed in Stamper [3], however it is performed locally in
the current cluster, with the edges leading out of the cluster
receiving the highest reward values.

All previously observed states are assigned to some cluster.
If a new state is observed we can assign hints based on that
student’s last known cluster. This means we can still offer
hints level 1 and 2 to students in states that we have not pre-
viously observed. Should students request lower level hints
we can recommend students to go back to the entry point
of their previous cluster. In Deep Thought students can
do this by deleting prepositions from their solution through
a delete action. While the interaction Network, clustering
procedure, and the hint policy are domain independent, the
hint templates are specific to the tutor and domain.

6. CONCLUSIONS
This work makes three contributions. The first is the Inter-
action Network, a novel data structure for modeling interaction-
data from open problem solving environments. By placing
interaction data into a network and encoding meaning in
the network relationships, we can derive educational insight
from network analysis techniques. The second contribution
is the application of community detection, detecting sub-
populations of the state space, to derive sub-goals in which
the nodes and actions are similar. The final contribution is
the method of using the community structure in the inter-
action network to generate both high and low level hints.

7. FUTURE WORK
The current algorithm used for detecting community struc-
ture, via edge betweenness, does not directly take into ac-
count problem solving specific characteristics. For example,
in the Deep Thought data we have defined start and goal
states. By incorporating those characteristics into the clus-
tering algorithm more meaningful clusters may emerge.

8. REFERENCES

[1] J. R. Anderson. How can the human mind occur in the
physical universe? Oxford University Press, New York,
NY, USA, 2007.

[2] T. Barnes and J. Stamper. Toward automatic hint gen-
eration for logic proof tutoring using historical student
data. In Proceedings of the 9th international conference
on Intelligent Tutoring Systems, ITS ’08, pages 373–
382, Berlin, Heidelberg, 2008. Springer-Verlag.

[3] T. Barnes and J. Stamper. Toward automatic hint gen-
eration for logic proof tutoring using historical student
data. Proceedings of the 9th International Conference
on Intelligent Tutoring Systems (ITS 2008), pages 373–
382, 2008.

[4] B. S. Bloom. Taxonomy of Educational Objectives: The
Classification of Educational Goals. Taxonomy of ed-
ucational objectives: the classification of educational
goals. Longman Group, New York, 1956.

[5] A. T. Corbett and J. R. Anderson. Knowledge trac-
ing: Modeling the acquisition of procedural knowledge.
User Modeling and User-Adapted Interaction, 4:253–
278, 1994.

[6] M. J. Croy. Graphic interface design and deductive
proof construction. J. Comput. Math. Sci. Teach.,
18:371–385, December 1999.

[7] M. J. Croy. Problem solving, working backwards,
and graphic proof representation. Teaching Philosophy,
23:169–188, 2000.

[8] D. Fossati, B. Di Eugenio, S. Ohlsson, C. Brown,
L. Chen, and D. Cosejo. I learn from you, you learn from
me: How to make ilist learn from students. In Proceed-
ings of the 2009 conference on Artificial Intelligence in
Education: Building Learning Systems that Care: From
Knowledge Representation to Affective Modelling, pages
491–498, Amsterdam, The Netherlands, The Nether-
lands, 2009. IOS Press.

[9] M. Girvan and M. E. J. Newman. Community struc-
ture in social and biological networks. Proceedings of
the National Academy of Sciences, 99(12):7821–7826,
June 2002.

[10] J. C. Stamper, M. Eagle, T. Barnes, and M. Croy.
Experimental evaluation of automatic hint generation
for a logic tutor. In Proceedings of the 15th interna-
tional conference on Artificial intelligence in educa-
tion, AIED’11, pages 345–352, Berlin, Heidelberg, 2011.
Springer-Verlag.


