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ABSTRACT
We apply collaborative filtering (CF) to dichotomously scored
student response data (right, wrong, or no interaction), find-
ing optimal parameters for each student and item based on
cross-validated prediction accuracy. The approach is natu-
rally suited to comparing different models, both unidimen-
sional and multidimensional in ability, including a widely
used subset of Item Response Theory (IRT) models which
obtain as specific instances of the CF: the one-parameter lo-
gistic (Rasch) model, Birnbaum’s 2PL model, and Reckase’s
multidimensional generalization M2PL. We find that IRT
models perform well relative to generalized alternatives, and
thus this method offers a fast and stable alternate approach
to IRT parameter estimation. Using both real and simu-
lated data we examine cases where one- or two-dimensional
IRT models prevail and are not improved by increasing the
number of features. Model selection is based on prediction
accuracy of the CF, though it is shown to be consistent with
factor analysis. In multidimensional cases the item parame-
terizations can be used in conjunction with cluster analysis
to identify groups of items which measure different ability
dimensions.

1. INTRODUCTION
Online courses offer the prospect of large data sets of stu-
dent responses to assessment activities that occur over time
and under varying conditions (e.g. training, practice, graded
homework, and tests). These present a more complex anal-
ysis task than test data recorded under constrained circum-
stances, but they offer the opportunity to learn about learn-
ing (e.g. over a semester, or from a specific intervening in-
structional activity) in the spirit of evidence-centered design
[1]. Analyzing such data will require extensions of standard
assessment methods such as Item Response Theory (IRT),
for example when multiple attempts are allowed [2].

In the context of educational measurement, item response
models have numerous advantages over classical test theory,
and their use is widespread [3]. Despite a variety of available
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software packages, IRT parameter estimation is still techni-
cal and goodness-of-fit analysis continues to be a subject
of research [4; 5]. In this paper we describe an alternate
approach to IRT parameter estimation and goodness-of-fit
motivated by machine learning. Our approach springs from
an operationalist interpretation of the goals of IRT as stated
by Lord [6]: “to describe the items by item parameters and
the examinees by examinee parameters in such a way that
we can predict probabilistically the response of any exami-
nee to any item, even if similar examinees have never taken
similar items before.”

Collaborative filtering (CF) is commonly used in recom-
mender systems with the goal of recommending unfamiliar
items to a user based on ratings of those items by other
users and prior rating information by the user in question
[7]. The Netflix prize, for example, drew much attention to
the problem of movie recommendations [8]. The idea behind
any collaborative filter is that when multiple users interact
with overlapping subsets of items, information from the in-
teractions can be extracted and used to make probabilis-
tic inferences about potential future interactions. Memory-
based CFs attempt to do this by exploiting similarity be-
tween users based on a vector of their prior interactions. A
naive algorithm might predict that user J will have identi-
cal interactions to those of the most similar user K (or to
cluster of similar users). This descriptive approach does not
attempt to model, causally or otherwise, the nature of the
individual interactions. By contrast, model-based CF uses
the partial interaction information to model a set of param-
eters for the users and the items which, taken together, can
reconstruct probabilistic predictions about the missing in-
teractions. In this aspect, CF and IRT have the same end.

The structural similarity between IRT and logistic regres-
sion has been noted in [9; 10]. Beck and Woolf [11] have
applied a linear regression machine learning algorithm to an
intelligent arithmetic tutor to predict when a student would
answer a problem correctly (and in how much time). Des-
marais and Pu [12] have compared Bayesian modeling of
knowledge spaces to IRT in pursuit of examinee ability esti-
mation. Whereas Bayesian knowledge tracing requires iden-
tification of subject-specific knowledge components, multidi-
mensional IRT is a general framework for measuring ability
along multiple dimensions.

This paper explores the application of model-based collabo-
rative filtering (CF) to the analysis of student responses with
similar goals to IRT, i.e. finding parameters for students



and items that combine to predict student performance on
an item by item basis. From machine learning, we borrow
the notion of learning the model from the data. Rather
than assign an item response model a priori, we use the
CF to train a class of log-linear models on the data and
select the one which performs the best in terms of predic-
tion accuracy. The model is selected for capturing maximal
information from a student response matrix, with no prior
knowledge about the data assumed. We show that several
standard IRT models emerge naturally as special cases.

In the remaining sections, we describe the numerical pro-
tocol for parameter estimation as well as an approach to
goodness-of-fit based on prediction accuracy and cross-validation
techniques standard in machine learning. The approach is
naturally suited to comparing different IRT models, both
unidimensional and multidimensional. We apply the CF to
two sets of student response data. One of the two, con-
taining roughly 120 online homework responses in a Gen-
eral Chemistry course with 2000 students, hints strongly at
two dimensions of skill and discrimination for students and
items respectively. We demonstrate that the items, thus
parametrized by the CF, cluster into the same groupings
that are suggested by principal component analysis.

2. REGULARIZED LOGISTIC REGRESSION
AS A COLLABORATIVE FILTER

2.1 Parameter Estimation
We describe the collaborative filtering approach for dichoto-
mously scored responses using regularized logistic regres-
sion. Particular IRT models obtain as a special case.

A binary classifier of individual responses is built ab initio
around a logistic function

P =
1

1 + e−Z
(1)

which provides a mapping from the real line to the probabil-
ity interval [0,1]. We are given a response matrix Usi whose
rows represent the response vector of student s to each item
i. Each student is to be parametrized by a vector θk and
each item by a vector Xk. The vectors are by design of com-
mensurate dimension (known as the number of features nf )
such that a scalar product can be constructed, the logit, or
inverse of the logistic function,

Z = θ ·X =
∑
k

θkXk (2)

Although student and item indices have been suppressed, Z
is a matrix product of θ (Ns × nf ) and X (nf × Ni ). It
is useful to modify the description slightly to include a bias
component (fixed, equal to 1) on either the student side or
the item side, or both, by considering generalizations such
as

θ∗ =

(
1
θ

)
X∗ =

(
X
1

)
(3)

in which case

Z = θ∗ ·X∗ = X0 +
∑
k

θkXk + θ0 (4)

where we have taken the liberty of relabeling the indices for
simplicity of presentation. The bias component in a student
or item vector does not add parameter information but im-
portantly allows the logit to be a function of the difference
between student and item parameters. (Nothing is gained by
having more than one bias component since a sum of student
or item parameters defines a single alternate parameter with
the same information). The logistic function now generates
a probability (or expectation) matrix with the dimensions
Ns ×Ni of the response matrix Usi,

Psi =
1

1 + e−Zsi
(5)

The likelihood function for the observed response matrix U
given the parameters θ and X is given by the product

L(U |θ,X) =
∏
s

∏
i

PUsi
si (1− Psi)(1−Usi) (6)

and remains to be maximized by suitable assignment of stu-
dent and item parameters. For computational benefit, one
typically uses the logarithm of the likelihood function. If
we multiply the log likelihood by −1 (turning the maximum
into a minimum), we can relabel the result in the convention
of machine learning as the “cost function”

J(θ,X) = −
∑
s

∑
i

[Usi logPsi + (1− Usi) log(1− Psi)]

(7)

Numerically maximizing the likelihood function L or (equiv-
alently) minimizing the cost function J is quite fast on a
modern desktop with off-the-shelf optimization packages (in
our R implementation, we use optim with method “BFGS”).
Typically these min/max finders take as arguments one long
parameter vector (formed by unrolling the X and θ matri-
ces) and a definition of the cost function and its gradient.
As of this writing, a response matrix of 2000 students and
50 items takes about 10 seconds to process on a 3.4 GHz
Intel i7 machine. This approach to Joint Maximum Likeli-
hood Estimation (JMLE) no longer necessitates a stepwise
update of item and student parameters as was once standard
[13; 14; 15].

As the number of model features nf is increased in any data
fitting scenario, it becomes possible to minimize the cost
function with parameters that do not generalize well to new
data, i.e. to over-fit the data. Regularization terms may
be introduced in the cost function to reduce over-fitting.
To equation 7 we add the terms (sums exclude any bias
components)

λ
∑
k=1

θ2k + λ
∑
k=1

X2
k (8)

where the optimal regularization parameter λ can be deter-
mined from cross-validation as discussed is section 2.3.

2.2 IRT Recovered as Special Cases of the CF
It is now possible to show explicitly how IRT models emerge
from this framework. To keep track of the absence or pres-
ence of the optional bias component, we label the dimension-
ality of the student or item vector as an ordered pair. The
first component refers to the number of information-carrying



parameters while the second (either a zero or a one) indi-
cates whether or not a bias component is used. Thus the
Rasch model (operationally equivalent to the 1PL model)
obtains under the arrangement

dim(θ) = (1, 1) θ∗ = (1 θ)
dim(X) = (1, 1) X∗ = (X 1)

}
→ ZRasch = X + θ (9)

where we have used the generalized form of the logit con-
structed in equation 4. The scalars θ and X here are iden-
tified with the student ability and item easiness parameters
in the Rasch model.

The Birnbaum 2PL model, still unidimensional in skill, is
obtained as

dim(θ) = (1, 1) θ∗ = (1 θ)
dim(X) = (2, 0) X = (X1 X2)

}
→ Z2PL = X1 + θX2

(10)

Although the slope-intercept form of the logit appears in the
literature, it is common to map X1 and X2 to the discrim-
ination and difficulty parameters α and β, where α = X2

and β = −X1/X2, such that Z = α(θ − β).

As a final example, Reckase and McKinley [15; 16; 17] have
defined as M2PL the multidimensional extension of the 2PL
model for m skill dimensions, which emerges here when

dim(θ) = (m, 1) θ∗ = (1 θ1 . . . θm)
dim(X) = (m+ 1, 0) X = (X0 X1 . . . Xm)

}
→ ZM2PL = X0 +

m∑
i=1

θmXm

(11)

This is a compensatory multidimensional model to the ex-
tent that high values of one component of θ may compensate
for low values in another component. However the model is
still capable of describing items which have very low discrim-
ination along one or more skills. The Xm item parameters
for m > 1 should be seen as “discrimination-like” param-
eters whereas a “difficulty-like” parameter along each axis
could be constructed by analogy with the 2PL model as the
ratio −X0/Xm.

2.3 Evaluating the Model, or Goodness-of-Fit
The CF minimization procedure results in a set of parame-
ters for each student and item. These can be used to con-
struct item response curves (or surfaces or hyper surfaces) as
a prelude to studying model-data fit. An alternate approach
however, common to machine learning algorithms, is to se-
quester a portion of the response matrix as a test set which is
not considered during parameter estimation. Once parame-
ters are estimated using the remaining “training” data, these
same parameters are used to predict the values in the test
set (where a probability value of greater than 0.5 results in
the prediction of a correct item response). The percentage of
correctly classified elements is the accuracy score. An inter-
mediate test-set can be used for cross-validation, for example
to adjust the regularization parameter to avoid over-fitting
the training set. Moreover by subsampling multiple times
(either with disjoint partitions or random subsamples) and
averaging the accuracy score, subsampling variability can be
controlled.

In the following section, we present results of data analyzed
using this recipe, with 30% of the response matrix randomly

subsampled for use as a test set, repeating 100 times. In
section 4, we discuss interpretation of the accuracy score as
a goodness of fit statistic.

3. SAMPLE RESULTS OF CF ANALYSIS
We analyze three data sets, two real and one simulated. The
first set comes from a pre-test administration of a physics
instrument, the Mechanics Baseline Test (MBT) [18] at the
Massachusetts Institute of Technology over multiple years
from 2005-2009 (26 items and 2300 examinees). The MBT is
a standard instrument used to gauge student learning gains
on and competencies with essential concepts in introductory
physics. A superset of these data has been described and
analyzed by Cardamone et al. using (unidimensional) IRT
[19].

To test whether the collaborative filter would indeed“discover”
multidimensionality of skills in student response data, we
constructed a second data set of simulated responses to
a two-skill test, assuming correlated skill-components but
unidimensional items. In other words, 2000 skill-pairs were
sampled from a multivariate Gaussian distribution and a re-
sponse matrix for 60 items simulated based on a 2PL unidi-
mensional model. Responses to the first 30 items depended
only on the first skill component, while responses to the last
30 items depended only on the second component. The two
skills over the sampled population were correlated with a
Pearson coefficient r = 0.58.

The third data set comes from online homework data us-
ing LON-CAPA for a General Chemistry class at Michigan
State University (MSU). The class was selected for study
because it had a large student enrollment in a typical year
(N = 2162), and because the 120 items were repeatedly ad-
ministered over several years between 2003-2009. Although
students were allowed multiple attempts on homework prob-
lems, the responses were scored correct/incorrect on first
try for this analysis. No prescreening of the items was per-
formed, and the data analysis was completely blind to the
content of this course.

When the dichotomously scored response matrix contained
omitted responses (up to 40% in the General Chemistry
homework) the sum over matrix elements in Equation 7 and
the computation of the accuracy score both excluded omit-
ted responses.

For each data set, the model space was scanned by starting
with dim(X) = (1 0),dim(θ) = (1 0) and proceeding incre-
mentally subject to the commensurability constraint (i.e. to
construct a scalar product of θ and X). In the figures below
we denote each model by combining the dimensions of θ and
X into one compact string (dim(θ) dim(X)), i.e. (1010). In
this notation, the model (2130) is read as containing two
skill parameters plus a bias parameter and three item pa-
rameters (no bias). The apportionment of bias parameters
means that both skill parameters multiply an item parame-
ter, but there is one item parameter that remains as a term
by itself in the logit.

Figures 1-3 display the accuracy scores of the CF models
as the dimensionality is varied. For reference, we indicate
with shaded regions the separation of the model space by
the dimensionality of student skills. We also indicate with
vertical dashed lines the CF models corresponding to par-
ticular IRT models. We observe that for the MBT data set,
accuracy increases up to the unidimensional 2PL model, but
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Figure 1: Model by model accuracy scores using the Me-
chanics Baseline Test data. Performance peaks at the 2PL
model and is not improved by additional features.

77
.0

77
.5

78
.0

78
.5

79
.0

79
.5

80
.0

80
.5

Simulated Two−skill Response

Ac
cu

ra
cy

 (%
)

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

1PL

2PL 2d2PL

1d skill 2d skill 3d skill 4d skill

 (1
01

0)
 

 (1
11

1)
 

 (1
12

0)
 

 (2
01

1)
 

 (2
02

0)
 

 (2
12

1)
 

 (2
13

0)
 

 (3
02

1)
 

 (3
03

0)
 

 (3
13

1)
 

 (3
14

0)
 

 (4
03

1)
 

 (4
04

0)
 

 (4
14

1)
 

 (4
15

0)
 

 (5
04

1)
 

 (5
05

0)
 

CF Model (by parameter dimensionality)

Figure 2: Model by model accuracy scores using the simu-
lated two-skill responses. Two-dimensional models (and the
2d-2PL model in particular) perform optimally.
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Figure 3: Model by model accuracy scores using online Gen-
eral Chemistry homework. Two-dimensional models (and
the 2d-2PL model in particular) outperform unidimensional
models.

no significant gains are achieved by going to higher dimen-
sional models. In the simulated response data based on a
two-part, two-skill test, an accuracy improvement is realized
by going to two-dimensional models (and the 2D-generalized
2PL MIRT model in particular), but again this asymptotic
limit is not exceeded by higher-dimensional models. This is
not surprising given that the simulated data were devised
using two skills, but it serves as confirmation that the CF is
capable of learning this feature of the data. The substantive
result is that the General Chemistry analysis (Fig. 3) follows
the pattern of the two-dimensional simulated data and not
the unidimensional MBT data.

We note that among the four possible models representing
m skill dimensions (for m > 1) the latter two models appear
to outperform the first two (except in the case of the simu-
lated data). The better performing models are the Reckase
M2PL model (m 1 m+1 0) and a hybrid model (m 1 m 1)
which could be thought of as M2PL along all but one skill
component and 1PL for the remaining skill. Models with
higher dimensionality require larger regularization parame-
ters to avoid over-fitting. The apparent degradation of per-
formance for increasing dimensionality is most likely due to
over-fitting/sub-optimal choice of regularization parameter
(the choice was suitable for the MBT data).

To understand the structure of the simulated two-dimensional
data set and calibrate our perceptions for the General Chem-
istry data, we perform an exploratory factor analysis of the
simulated response matrix and show the scree plot in fig-
ure 4(a). We plot the projection of each item (factor loading)
onto the second principal component in figure 4(b). Whereas
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Figure 4: Simulated two-skill analysis: (a) scree plot and
(b) projection of items onto second principal component for
simulated data set. Color is added in (b) to identify points
in later figures.

the first principal component captures the variance in overall
score or (unidimensional) skill, the second component

will differentiate between students who may have the same
overall score but perform proportionately better or worse on
different groups of items.

The second principal component loadings in figure 4(b) clearly
distinguish two different subsets of items in the simulated
data, the first and second half of the item set by design.

In figures 5(a) and figure 5(b), we now plot the items as
points in the item parameter space generated by two CF
models: the (1120) CF model corresponding to unidimen-
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Figure 5: Simulated two-skill analysis: Item parameter
space in (a) 1d- and (b) 2d-2PL IRT. Color coding is based
on second principal component loading, and k-means cluster
analysis is superimposed using shapes in (b).

sional 2PL (the full item-parameter space is 2-dimensional,
spanned by X1 and X2) and the (2130) CF model, corre-
sponding to 2d-2PL IRT. There are three item parameters
in the latter model, and we examine the reduced parame-
ter space spanned by the two discrimination-like parameters
X2 and X3. The parameters plotted here come from a single
run of the CF algorithm.

The unidimensional model blurs any distinction between the
two known groups of items, but this distinction is manifest
in the 2d-2PL model. The roughly orthogonal arms in fig-
ure 5(b) reflect the fact that in our simulated responses, each
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Figure 6: General Chemistry homework data justifies two-
dimensional models. Scree plot (a) showing two significant
eigenvalues and (b) projection of items onto second principal
component. Color is added in (b) to identify item points in
later figures.

item was truly unidimensional in skill-dependence and thus
does not discriminate at all with respect to the complemen-
tary second skill. We superimpose the results of a k-means
(with k = 2) clustering analysis indicated by shape on the
plotted points in figure 5(b). All the red (blue) points are
overlapped with triangles (circles), showing that the cluster-
ing algorithm finds the same two groups that were identified
by the factor loading in figure 4(b). We have verified that
this clustering is manifest in three dimensions as well using
a 3d-2PL model on simulated data.
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Figure 7: General Chemistry: (a) unidimensional 2PL item
parameter space shows little separation of colors (corre-
sponding to loading onto the second principal component).
Conversely (b) 2d-2PL IRT clearly separates color-coded
items in the space of two discrimination-like parameters;
moreover cluster analysis in this space identifies the border.

We repeat the procedure to visualize the results of the Gen-
eral Chemistry data in figures 6(a)-7(b) with similar results.
The cluster analysis in the 2d-2PL parameter space identi-
fies the same two groups as the principal component analysis
for over 90% of the items (discrepant items are those that
fall very close to the zero line in figure 6(b)).

We emphasize that the choice of model (2130) was driven by
the accuracy score of the CF algorithm. Given the model,
the two clusters of items emerge from the assignment of



discrimination-like item parameters which best predict the
response matrix. We have added no information about the
items nor offered any interpretation of the meaning of the
two clusters in this case, though we are working with domain
experts on identifying the significance. For the simulated
data, the two clusters emerge as expected from simulated
responses predicated on the assumption that the different
item groups test different, though correlated, abilities of the
examinees.

4. INTERPRETATION OF THE ACCURACY
SCORE STATISTIC

It may be noted that the overall accuracy scale differs in each
of the figures 1-3, that the scores sometimes seem rather
unimpressively low (≈ 65%), and that in some cases the
model scores for a given data set differ by only a fraction
of one percent. Since we claim that this score provides a
basis for preferring one model over another, it behooves us
to discuss the meaning of the score value itself.

Beck and Woolf also observed that in any probabilistic bi-
nary classifier, the maximum expected accuracy score de-
pends on the distribution of values in the probability (or
expectation) matrix [11]. For example, if all probabilities
(for each student-item pairing) are equal to 0.75, then all
responses would be predicted by the binary classifier to be
correct, though of course only 75% should be expected. Per-
haps less intuitive, if the values in the probability matrix are
distributed uniformly over all values in the interval [0, 1], the
expected accuracy score will also be 75%.

A workaround suggested in [11] is to bin the matrix elements
into probability bins before comparing with the observed
responses. This indeed results in a visible one-to-one cor-
respondence between expected bin-fractions and observed
bin-fractions, but bin-based statistics inevitably raise sev-
eral concerns about the binning procedure itself. Certainly
binning choice is not a characteristic of the model. Instead,
we probe the accuracy score formally as follows. If the dis-
tribution of p values in the expectation matrix is given by a
distribution function g(p), then the expected accuracy score
is given by the following “average”

S =

∫ 0.5

0

(1− p)g(p)dp+

∫ 1

0.5

pg(p)dp (12)

where the first term accounts for predicted-to-be-wrong and
the second term for predicted-to-be-right matrix elements.
The shape of g(p) in turn depends on the distribution of the
student and item parameters and the function that is used
to model the probability. As an explicit example, for the
Rasch or 1PL model, the probability of a correct response
when the student skill is θ and the problem difficulty is β is
given by

p =
1

1 + e−(θ−β) (13)

If student skills are distributed as gθ(θ) and item difficulties
as gβ(β), then g(p) can be shown to be the convolution

g(p) =
1

p(1− p)

∫ ∞
−∞

gθ(θ)gβ

(
θ + ln

1− p
p

)
dθ (14)

Although the model dependence has been folded into equa-

tion 14, the dependence on the distribution of item difficul-
ties is explicit. The accuracy score thus cannot be meaning-
fully compared for two different data sets unless the exam-
inees and items are drawn from very similar distributions.
For 2PL and M2PL models, the best score will also be a
function of the distribution of item discriminations. In fact,
we have observed that after removing two MBT items with
pathological item response curves found in [19], prediction
accuracy on the remaining data increased by 2 percentage
points, while this gain was not observed when two randomly
selected problems were removed.

In view of the model dependence of equation 14, a cau-
tionary flag might be raised in using the accuracy score to
compare different models on a given data set. However since
the models are designed to predict the data, we argue that
this model-dependence is justly accounted for in using the
accuracy score as a goodness-of-fit statistic.

In practice it is much easier to calculate the expected score in
equation 12 numerically from the expectation matrix with-
out any integrals. Simply replace all probabilities less than
0.5 by one minus the probability and average over the re-
sulting matrix.

5. SUMMARY AND CONCLUSIONS
We have applied a model-based collaborative filter, i.e. a
numerical method for analyzing a dichotomous student re-
sponse matrix with the goal of predicting the observed re-
sponses. Relying on readily available optimization code, the
CF is fast, flexible and stable. We showed that CF nat-
urally parameterizes a series of models with increasing di-
mensionality and that this family contains several common
unidimensional and multidimensional IRT models.

We showed with sample data that the CF can aid in model-
selection and that the multidimensional-model capability
can result in improved prediction accuracy and easy investi-
gation of whether the data are better fit by alternate models.
Practitioners of IRT will be pleased to learn that, at least
in the cases considered here, CF was not able to improve
significantly on the quality of fit achieved using standard,
but in two cases multidimensional, IRT models. Moreover,
the dimensionality of models suggested by the CF and the
clustering of items in the ensuing parameterizations are con-
sistent with results from exploratory factor analysis.

Finally, the stability, speed, close connection with IRT, and
easy generalizability of CF recommends it very highly for
use in analyzing student response data of all sorts.
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