
Co-Clustering by Bipartite Spectral Graph Partitioning for
Out-of-Tutor Prediction

Shubhendu Trivedi
Dept. of Computer Science

Worcester Polytechnic Institute
Worcester, United States

shubhendu trivedi@ieee.org

Zachary A. Pardos
Dept. of Computer Science

Worcester Polytechnic Institute
Worcester, United States

zpardos@wpi.edu

Gábor N. Sárközy
Dept. of Computer Science

Worcester Polytechnic Institute
Worcester, United States
gsarkozy@cs.wpi.edu

Neil T. Heffernan
Dept. of Computer Science

Worcester Polytechnic Institute
Worcester, United States

nth@cs.wpi.edu

ABSTRACT
Learning a more distributed representation of the input fea-
ture space is a powerful method to boost the performance
of a given predictor. Often this is accomplished by parti-
tioning the data into homogeneous groups by clustering so
that separate models could be trained on each cluster. In-
tuitively each such predictor is a better representative of
the members of the given cluster than a predictor trained
on the entire data-set. Previous work has used this basic
premise to construct a simple yet strong bagging strategy.
However, such models have one significant drawback: In-
stances (such as students) are clustered while features (tu-
tor usage features/items) are left alone. One-way cluster-
ing by using some objective function measures the degree
of homogeneity between data instances. Often it is noticed
that features also influence final prediction in homogeneous
groups. This indicates a duality in the relationship between
clusters of instances and clusters of features. Co-Clustering
simultaneously measures the degree of homogeneity in both
data instances and features, thus also achieving clustering
and dimensionality reduction simultaneously. Students and
features could be modelled as a bipartite graph and a si-
multaneous clustering could be posed as a bipartite graph
partitioning problem. In this paper we integrate an effective
bagging strategy with Co-Clustering and present results for
prediction of out-of-tutor performance of students. We re-
port that such a strategy is very useful and intuitive, even
improving upon performance achieved by previous work.

Keywords
Out-of-Tutor Prediction, Dynamic Assessment, Spectral Co-
clustering, Ensemble Learning, Bootstrap-Aggregation

1. INTRODUCTION
A significantly large student population would usually have
a wide variation in learning rates and knowledge levels. While
there are numerous reasons for this diversity, three major
reasons are related to: the type of instruction or help they

respond best to, the way they are oriented towards learning
and their levels of intellectual development [1],[2]. Need-
less to say, such differences would be reflected in the way
students interact with educational software, making educa-
tional data quite difficult to mine well. Specifically there
are many educational data mining problems where the end
goal is to predict the performance of a student on a given
in-tutor or out-of-tutor task. In-tutor tasks include pre-
dicting the probability that a student will answer an item
correctly after attempting a sequence of similar questions
whereas out-of-tutor tasks include being to predict student
performance in post-tests based on the data from their tutor
usage.

The idea that students are quite different makes it appar-
ent that perhaps it is not such a good idea to fit a global
prediction model over the entire dataset for making predic-
tions. In spite of the differences between students, educators
commonly observe that students actually lie in very rough
groups and have similar pedagogical needs. Taking a cue
from this intuition, the task of prediction can be improved
by clustering students into somewhat homogeneous groups
and then training a separate predictor for each group. Such
a predictor would obviously be a much better representative
of students in that cluster as compared to a predictor which
is fit on the entire dataset. For example, it makes sense
to have a different model for students roughly classified as
fast learners and a different model for slow learners than the
same for both. This rather simple strategy of grouping stu-
dents together and then modeling them separately can lead
to improved performance in prediction and perhaps even
better interpret-ability.

While the above approach is compelling, there are two ma-
jor issues with it. Firstly, while it is useful to model students
as belonging to different groups, it is also known that such
groupings are quite fuzzy and approximate. Students might
actually possess different characteristics in varying degrees
and what really sets them apart are certain dominant char-
acteristics. For example students classified as fast learn-
ers might actually be slow learners in certain skills. A fast
learner might also belong to the group of students that are
good at recalling information etc. Thus, such complex char-
acteristics can not be possibly modelled by simply clustering



students to a certain limit and then training models for each
cluster. This “spread” of features in a student across groups
also needs to be captured to make a distributed predictive
model such as the above more meaningful. Such an issue
can be resolved by varying the granularity of the clustering
and training separate models each time so that such features
can be accounted for. A simple yet quite effective strategy
to do so was proposed by the authors and was seen to work
quite well both in educational contexts (in-tutor predictions
[3], out-of-tutor predictions [4],[5]) and more generally [6].

The second problem with the above approach is that cluster-
ing is implicitly suggested to be one-way i.e only clustering
students. But this need not necessarily be the case and only
clustering students would consider only half of the story. As
an example, consider a matrix in which the rows represent
students and the columns represent their responses to cer-
tain items. Clearly, clustering students would depend upon
their item distributions, implicitly suggesting that for cer-
tain students certain items are more important than others.
Similarly if items were to be clustered, they would depend
on which groups of students get them correct (or incorrect)
most frequently. This indicates a duality between these two
clusterings, which on simultaneous co-clustering could be
very useful in answering many research questions. Co clus-
tering of such a student versus item matrix would pair clus-
ters of student proficiency to clusters of item performance
which could be seen as a sort of a subject treatment interac-
tion. This idea could be extended to the more general case
of students and features rather than just items. In this work
we use this idea of co-clustering students and their tutor in-
teraction features and interleave it with the bagging strategy
which was used with clustering [3],[4],[5],[6]. This combined
approach is then used to predict the post-test scores of stu-
dents.

This paper is organized as follows: In Section 2 we discuss
the idea of co clustering in more detail and that co cluster-
ing could be posed as a bipartite graph partitioning problem.
In Section 3 we describe a general framework in which we
interleave co clustering with the idea of generating an en-
semble. In Section 4 we describe the experimental results
which demonstrate the validity of this approach. In Section
5 we discuss the results and also describe some avenues for
further work.

2. CO-CLUSTERING
Clustering is a fundamental tool from unsupervised learn-
ing for data analysis that groups together relatively homo-
geneous objects. The central idea for clustering is that every
object could be specified by a feature vector (or a point in
the feature space) and then the degree of homogeneity be-
tween them could be measured by some objective function
that uses these feature vectors. For example in k-means
clustering: the points are grouped so as to minimize a dis-
tortion function, which is basically the sum of distances of
all points from their assigned cluster centroids [7].

Clustering algorithms are one-way, i.e. one dimension of the
data (say the rows of the data matrix) is clustered based
on the similarities measured on the second dimension (say
the columns). As pointed out in the previous section it
might be desirable, quite frequently, to cluster along both
the dimensions simultaneously, exploiting the apparent du-
ality between them. Such simultaneous clustering can of-

ten offer interesting insights about the nature of interaction
between the clusters at both the dimensions [8]. This util-
ity is fast making co-clustering a fundamental tool for data
analysis as is indicated by its widespread use in text and
document mining [9], [10]; bioinformatics and gene expres-
sion analysis [11], [12]; collaborative filtering [13] and many
others practical applications.

While there are now a number of approaches to co-clustering
such as based on spectral graph theory [10] and informa-
tion theory [14], [15], each with its advantages, we consider
the approach proposed by Dhillon [10] which formulates the
problem of co-clustering as a bipartite graph partitioning
problem. We now briefly describe this approach starting
with the relevant notation and definitions.

2.1 Notation and Definitions
A graph is represented as G = (V, E) where V represents the
set of vertices and E represents the set of all edge weights
Eij , where Eij is the edge weight between vertices {i, j}.

Definition 1. The n×n Weighted Adjacency Matrix
of an undirected graph is defined as the matrix (mij)i,j=1,...,n.
Ifmij = 0 it implies that vertices vi and vj are not connected
by an edge. If mi,j 6= 0 it implies that the vertices {i, j} are
connected and mi,j is the corresponding edge weight. Since
the graph is undirected, mij = mji necessarily.

Definition 2. Given the weighted adjacency matrix of a
graph and a partition of the vertex set V into two disjoint
subsets V1 and V2, the cut between these two subsets is
defined as:

cut(V1,V2) =
∑

i∈V1,j∈V2

Mij

An undirected bipartite graph is a triple represented by
G = (S,F , E) where S and F are two sets of vertices and E
is the set of edges. Since it is a bipartite graph one end of the
edges in set E have an endpoint in S and another in F . In
our case the set S is the set of students while the set F is the
set of features. The set of features could readily be seen as
a set of item-responses as well. If F is the set of items, then
an edge between si and fj exists if that item was answered
correctly by a student and not otherwise. More generally,
if F is just a set of features, then the edge {si, fi} simply
represents the value of that feature scaled between 0 and 1
for that student. Given this definition of a Bipartite Graph,
now we define the adjacency matrix of the same.

Consider a m×n dimensional data matrix with students on
the rows and the items or features on the columns. Let’s
suppose this matrix is given by A. Clearly, the adjacency of
the bipartite graph is given as:

M =

[
0 A
AT 0

]
The zeroes on the top-left and the bottom-right sub-matrices
signify the absence of connections amongst the elements of
S and F respectively (since connections in a bipartite graph
can only run between S and F). The matrix M is repre-
sented such that taking A at the top right corner and AT at
the bottom left implies that the first m rows of M represent
the set of students and the next n rows represent the set of
features or items.



Suppose the Bipartite Graphs (whose adjacency matrix is
defined above) is partitioned into k clusters V1, . . . , Vk. Given
this partitioning, a corresponding set of student clusters
S1 . . .Sk and corresponding feature clusters F1 . . .Fk would
also be obtained. It could be intuitively seen that the best
possible such set of clustering for all such pairs would be
when the sum of all edges which cross between clusters is
the minimum possible. As defined by [10] this corresponds
to:

cut(S1 ∪ F1, . . . ,Sk ∪ Fk) = minV1,...,Vkcut(V1, . . . , Vk)

Where V1, . . . ,Vk represents a k-partitioning of the graph.

The above definition leads us to the Bipartite Graph Parti-
tioning problem:

Definition 3. The bipartite graph partitioning prob-
lem: Given a graph as defined earlier and subsets of V which
are almost of equal size, say V∗1 and V∗2 . The required par-
tition is

cut(V∗1 ,V∗2 ) = minV1,V2cut(V1,V2)

The bipartite graph partitioning problem as defined above is
NP-Complete. However, a good relaxation to this problem
is given by spectral graph bi-partitioning. This relaxation
is achieved via the graph Laplacian. The laplacian L of a
graph is a symmetric positive semi-definite matrix such that
its un-normalized form is given by L = D −M where D is
the degree matrix and M is the adjacency matrix as defined
earlier. Note that D is only a diagonal matrix while M is
a symmetric matrix with all zeros in the diagonal. Thus,
the Laplacian encodes both D and M in it and has many
useful properties such as being positive semi-definite, which
make it very useful for tasks such as clustering [24]. One
property of the Graph Laplacian that make it particularly
suitable for clustering are related to the properties of its
spectrum. The spectra of the Graph Laplacian unfolds the
data manifold to give an lower dimensional embedding which
can give “better” clustering results.

Returning to the Bipartite Graph Partitioning Problem, as
demonstrated by Dhillon [10] and Mohar [24], the second
eigenvector of the generalized eigenvalue problem Lz = λDz
gives a real relaxation to the problem of finding the mini-
mum normalized cut Q(V1,V2). The normalized cut is ba-
sically a cut that favours finding balanced partitions i.e. if
the cut of two different partitions is the same, then the nor-
malized cut is smaller for that partition which is more bal-
anced. Thus it favours partitions that are balanced and have
a small cut value. Clearly, the normalized cut is more suit-
able for tasks such as clustering [16]. Note that this relates
to the ideas above relating to the optimal bi-partitionings
in the following way: We want balanced clusterings with
minimum cut for solving the bipartite graph partitioning
problem, which would also be the optimal clustering for us.
Thus looking at the Laplacian of the bipartite graph might
provide such a clustering.

2.2 Spectral Co-Clustering
Given the definitions and notions in the previous section,
in this section we state an algorithm [10] for finding the
optimal co-clusters {S1 ∪ F1}, . . . , {Sk ∪ Fk} as mentioned
above. For that we define the graph laplacian of a bipartite

graph as such an optimal clustering can be found using a
laplacian. Using the definition of L = D −M as defined
above and also the definitions of D and M . The laplacian
may be written as:

L =

[
D1 −A
−AT D2

]
and

D =

[
D1 0
0 D2

]
where D1 and D2 correspond to the degree matrices of A
and AT respectively.

If the generalized eigenvalue problem Lz = λDz is written
for the above laplacian for a bipartite graph and then re-
arranged, it has been demonstrated [10] that the resulting
equations define the equations for a singular value decom-
position of the normalized matrix

An = D
−1/2
1 AD

−1/2
2

Thus instead of finding the second smallest eigenvector cor-
responding to the second eigenvalue, one could find the left
and the right singular values in its place. Finding the right
singular value gives a bi-partitioning of students while the
left singular value gives a bi-partitioning of the features.
These can then be used to find the optimal bi-partition as
defined above.

Algorithm 1.

1. Given the co-occurrence or data matrix scaled to be-
tween 0 and 1 A, form the normalized matrix.

An = D
−1/2
1 AD

−1/2
2

2. Compute the second left and right singular vectors for
An, concatenate them together to form a vector z.

3. Run k-means on this vector to obtain a simultaneous
clustering of both the students and the features.

This algorithm can be extended to a multipartition case if
instead of finding the second singular values, the first log2(k)
singular vectors are found. The rest of the process remains
the same.

Note that this algorithm gives a simultaneous clustering of
the rows and the columns and is restricted in the sense that
the number of row and columns clusters have to be the same.
We modify this by running k-means two times. If the num-
ber of row clusters is k and then the number of column
vectors is l, then we run k-means on the vector z twice,
once to find k clusters and then to find l clusters. The first
m elements of the length m + n cluster assignment vector
run will then correspond to the row clusters and the last n
elements of the cluster assignment vector in the second run
will correspond to the column cluster indices.

3. BAGGING STRATEGY
The statement of the supervised learning problem in ma-
chine learning could be roughly stated as follows: Given a
training set consisting of ordered pairs of feature vectors and



their associated labels (which might be discrete or contin-
uous), the task of a learning algorithm is to learn a func-
tional map from the feature space to label space. A learn-
ing algorithm is said to be more powerful if it is able to
learn mappings such that it can generalize well and make
correct predictions on test data-points on which it was not
trained. Since the functional map under consideration might
be highly non-linear, learning algorithms that output only
a single mapping (frequently referred to as the hypothesis)
might suffer from statistical, computational and representa-
tion issues that restrict them from learning good mappings.
One way of solving this problem is to transform the fea-
ture space into a more suitable and “richer” representation
such that learning using this new representation gives much
better functional maps as compared to the original represen-
tation. This is the motivation behind deep learning methods
which have caused a new wave of excitement in the machine
community since 2006 [17]. Another way of solving this
problem atleast partly, is by using ensemble learning meth-
ods [18],[19],[20]. The basic idea behind ensemble methods is
that they involve running a “base learning algorithm” multi-
ple times, each time with some change in the representation
of the input (e.g. only considering a subset of features in
each run) so that a number of diverse predictions (or maps)
could be obtained. This diversity in prediction is then ex-
ploited to get better predictions. Thus ensemble methods
approach the said problem by both trying to learn multi-
ple functional maps and also by learning a more distributed
and hence “richer” representation of the input space at the
same time. In the next section we describe a method to use
clustering for bootstrapping.

3.1 Clustering for Bootstrapping
In earlier work we introduced the idea of using clustering
for bootstrapping [3], [4], [5], [6]. This idea was quite un-
like other bagging methods which use a random subset to
bootstrap. Thus, it had the potential advantage that the
subsets used to bootstrap could be more interpretable. Be-
fore we generalize this methodology using co-clustering we
first briefly describe the methodology using clustering.

The training set was first clustered into k disjoint clusters.
A linear regression model was trained on each of the clusters
only based on the training points assigned to that cluster.
Since each such linear regression was a representative of only
one cluster, we called it a cluster model. Thus, for a given k,
there would be k cluster models. But since all the clusters
are mutually exclusive, the training set is represented by all
the cluster models taken together. This is called a prediction
model (PMk). For an incoming test point on which a pre-
diction is to be made, we first identify the cluster that point
belongs to. After the cluster has been identified, the appro-
priate cluster model could be used to make a prediction for
that point. Now note that we don’t specify the number of
clusters in the above. Hence, we can change the granular-
ity of the clustering from 1 to some high value, say K. In
each instance we would get a different prediction model (a
special case would be PM1, which would basically be when
one linear regression model is trained on the entire dataset).
Thus, we would obtain a set of K prediction models each
of which would make a separate prediction on the test set.
Since we vary the granularity of the clustering, each of these
predictions are different, this diversity in prediction could be

Figure 1: Finding a Prediction Model, PMkl with k row
clusters and l column clusters

used by averaging all the (or half) the predictions obtained
to get a single much stronger prediction.

3.2 Co-Clustering for Bootstrapping
Note that the clustering is only one-way. That is, bootstrap-
ping is done by only changing the data instances available
for each cluster model (by changing the number of cluster
models itself) but the number of features used in each case is
the same. A cluster basically is a bunch of rows in the data
matrix with all columns. A co-cluster on the other hand
would be a “block” in the data matrix with a sub-set of
rows and a sub-set of columns assigned to each “co-cluster”.
Thus a co-clustering could be thought of as a simultaneous
clustering and dimensionality reduction of the data. Note
that a clustering is only a special case of co-clustering when
the columns are not clustered at all (or have only one column
cluster).

Clearly, the above bagging methodology can be suitably
modified using co-clustering. For a given number of row
clusters k and column clusters l we could have k co-clusters
where-in each cluster has only some features assigned to it
(note that the definition is symmetric i.e we could think of
this as l co-clusters). For each co-cluster we train a sepa-
rate linear regression model only using the data instances
and features assigned to it. We thus obtain k Co-Cluster
Models. Like in the above case for clustering, the combina-
tion of the k co-cluster models would be considered to be
a Prediction Model which makes a single prediction on the
test set. We can then vary k from 1 to some value K and l
from 1 to some value L. By doing so, we would get a total
of K×L prediction models. We then average a subset of the
predictions made by these models to obtain a much stronger
prediction.

There are some interesting aspects to such a methodology
using co-clustering. For k = 4 and l = 4, the grid in Figure



(1,1) (1,2) (1,3) (1,4) 

(2,1) (2,2) (2,3) (2,4) 

(3,1) (3,2) (3,3) (3,4) 

(4,1) (4,2) (4,3) (4,4) 

Figure 2: Ordering the Co-Cluster Prediction Models, PMkl

2 illustrates all the Prediction Models (PMkl) that could be
obainted by co-clustering. The Prediction Model PM1,1 rep-
resented by (1, 1) is simply the case when there is one data
cluster and only one feature cluster i.e the original data ma-
trix itself. The prediction model for this case would simply
be training a linear regression on the entire dataset, consid-
ering all the features. The first column of this grid repre-
sents the case when the number of feature clusters is just
one, while the number of row clusters are changed. Note
that this is simply the methodology described above in Sec-
tion 3.1 using clustering. The first row of this grid is also
equally interesting. In this case the number of row clusters
is always one i.e the entire dataset is considered in all co-
clusters, while the column clusters are successively changed.
It should be noted that this is a sort of a step-wise regression,
where a linear regression is trained on the entire dataset but
the number of features that are used to train it are changed
(usually reduced as l increases). All the other cases are a
cross between these two extreme cases. We see that it seems
plausible that a bagging strategy using co-clustering if av-
eraged properly could definitely have more predictive power
as it generates diversity by considering a different subset
of data instances and features each time, consequently also
generating a much larger set of predictions.

3.3 Blending Predictions
As mentioned before, the method for combining the predic-
tions returned by the various prediction models is a naive
averaging strategy. When the prediction models were gener-
ated by clustering (PMk), we either averaged the first K/2
predictions (where K was the maximum number of clusters)
[6] or we learned the best number of prediction models that
could be averaged by an internal cross-validation [6]. The
averaging idea is not immediately straightforward when co-
clustering is used to generate the prediction models. This
is because the prediction models are obtained by changing
two parameters. It is also observed that prediction models
with a high k or l return poor accuracies, thus it wouldn’t be
useful to average predictions from all the PMk1 models first
and then PMk2 models and so on (i.e. traversing the grid
row-wise or column-wise). Since high values of k and l are
counter-productive, we take the order of the prediction mod-
els such that the sizes of k and l increase uniformly. This
ordering is illustrated by the curve in Figure 2. The first
half of this reordered set of predictions are then averaged.

4. EXPERIMENTAL VALIDATION
In this section we report experimental results for using co-
clustering for bagging and compare results with the bench-

mark (PM11) and clustering alone.

4.1 Dataset Description and Context
We primarily experiment with two datasets in this study.
This data was collected to study if dynamic assessment,
which has long been advocated as an effective method for
assessment, was actually better than the traditional static
assessment [21], [22]. Dynamic assessment is an interactive
approach to student assessment which is primarily based on
how much help a student requires during a practice test.
Traditional static testing only takes into account the per-
centage of questions that the student gets correct. Feng et
al. [23] showed that features that only recorded how much
assistance a student got while interacting with a tutor alone
were better predictors of student performance in post-tests
held later in the year as compared to how many questions
students got correct. This was confirmed in subsequent
studies [4], [5]. Thus if Co-Clustering is able to improve
predictions, then this study could further lend weight to the
idea that dynamic testing is indeed better than static test-
ing and that we could further improve upon PM11. It must
be noted that PM11 would correspond to results reported
in [23] which were better than static assessment. PM11 ba-
sically corresponds to the condition when all the dynamic
features are considered and all of the training set is used to
train a predictor.

The datasets come from the 2004-05 and 2005-06 school
years, the first two full years when ASSISTments.org was
used in schools in Massachusetts. ASSISTments is an e-
learning tutoring system developed at Worcester Polytech-
nic Institute which assesses students as it assists. These
datasets contain features that measure the interaction of
students with the tutor and their actual final grades, which
they obtained at the end of the year in the Massachusetts
state test (MCAS). There a total number of six features in
these datasets 1) DA Original Count is the number of
questions that the students answered with assistance in the
dynamic condition. 2) DA Original Percent Correct is
the percent of questions of feature 1 that students get cor-
rect . 3) DA Scaffold Percent Correct is the percentage
on tutorial help questions that students get correct. 4) DA
Average Time is the average time that a student spends
on a question 5) DA Average Attempt is the average
number of attempts students made per question. 6) DA
Average Hints is the average number of hints that stu-
dents used. The task is to use these interaction features to
predict the MCAS scores that students might get at the end
of the school year. The static condition feature is percentage
of questions answered correct in static testing. This feature
is never used for making predictions for the dynamic condi-
tion. The data in the 2004-05 set (ASSISTments 2004-05)
is for 628 students, while the 2005-06 data (ASSISTments
2005-06) is for 761 students.

For experimentation we do a five fold cross-validation on the
dataset and report results for the base condition (PM11) and
the various blended results which were obtained by averag-
ing as discussed in Section 3.3. For the sake of comparison
we also include results with k-means clustering too. In both
cases we consider the ensembled results, with the top K pre-
dictions averaged as described in [4], [5] and also in Section
3.1. Following results in [4] and [5] we report results in terms
of the mean absolute difference (MAD).

Finally, for pre-processing: As mentioned in Section 2, to



Figure 3: Performance on the 2004-05 Set

obtain a bipartite partitioning A must contain values that
are either binary or scaled between 0 and 1. Thus, in each
fold each feature column is scaled to between 0 and 1 so that
An could be considered a co-occurrence matrix. This marks
a slight difference from earlier papers in which the feature
scaling was done so as to map all the data-points to between
−1 and 1 by using the mapminmax command of MATLAB.
This slight difference might result in a small variation in the
results.

4.2 Experimental Results
We first report results on the ASSISTments 2004-05 dataset.
The five fold cross-validated results using co-clustering are
reported in Figure 3. The number of row clusters (k) and
the number of column clusters (l) were restricted to 4 each.
This resulted in 16 prediction models. The x-axis in the
graph represents the first eight prediction models on doing
co-clustering, while the y-axis simply gives the mean abso-
lute error. We observe that the accuracy of co-clustering
alone is quite bad (as seen by the blue line) as compared to
the baseline (PMkl, which is basically the result for x = 1 in
this graph. Note that the baseline is the dynamic condition
of Feng [23]). These predictions are those given by the first
elements of the ordered set of co-cluster prediction models
as defined in Section 3.3. However, averaging these predic-
tion models successively gives better and better predictions
(as can be seen by the red line).

Similar results were reported in the ASSISTments 2005-06
dataset as shown in Figure 4. In this dataset the prediction
models are far worse than the ensembled results as com-
pared to the previous dataset. Again, we obtain 16 predic-
tion models after co-clustering and successively average the
first eight (the first with second, the first with second and
third and so on) after they have been arranged in the way
suggested in Section 3.3. Again the ensembled results do
much better over the baseline (we report exact figures and
significance in Tables 1 and 2).

In Table 1 we compare the mean absolute errors when pre-
dictions of the first five prediction models are bagged. We
report results when the Prediction Models are obtained both
by using co-clustering and using k-means clustering on the
ASSISTments 2004-05 dataset. The figures in bold indi-
cate statistical significance over the baseline prediction on

Figure 4: Performance on the 2005-06 Set

Table 1: Comparison of predictions based on k-means and
Co-Clustering for the ASSISTments 2004-05 Dataset. Fig-
ures in bold indicate significance over the baseline on paired
t-test. Numbers are Mean Absolute Errors. Also note that
Pred. Model 1 corresponds to the baseline

Pred. Models Co-Clust k-means
1 8.7741 8.7741
2 8.7379 8.7518
3 8.7087 8.6725
4 8.6879 8.7153
5 8.6574 8.7100

a paired t-test. Results in Table 2 compare the predictions
obtained by using co-clustering and k-means for bagging on
the ASSISTments 2005-06 dataset.

The results are significantly better over the baseline and
also indicate that the dynamic assessment condition returns
a much better prediction of student test scores as compared
to the static condition. It has already been noted that the
static test condition results are significantly worse as com-
pared to even the baseline by [23] and [4], and thus we don’t
report results for the static condition.

5. DISCUSSION AND FUTURE WORK
The datasets that were used for the validation of this bag-
ging technique, which is based on co-clustering were not very
large and did not have a large number of columns. Thus,

Table 2: Comparison of predictions based on k-means and
Co-Clustering for the ASSISTments 2005-06 Dataset. Fig-
ures in bold indicate significance over the baseline on paired
t-test. Numbers are Mean Absolute Errors. Also note that
Pred. Model 1 corresponds to the baseline

Pred. Models Co-Clust k-means
1 7.9822 7.9822
2 7.7716 7.8185
3 7.5990 7.8034
4 7.4680 7.7815
5 7.5503 7.6487



these results were initially surprising. One would imagine
that in a dataset which has a small number of features, per-
haps a feature selection might not be too helpful. However,
our experiments show us otherwise. The results that we ob-
tain, while modest improvements show that this technique
though simple can give access to a novel source of variance
in the data. It can potentially also have some nice prop-
erties in terms of returning simpler and more interpretable
groups. For example, it was earlier pointed out that one
row of the prediction models were actually nearly like a lin-
ear regression model in which the features are successively
eliminated. At the same time it was observed that one col-
umn of the prediction models were actually just the various
prediction models that we obtained on clustering alone as
reported in some previous work. It would be interesting to
see how the Co-Clusters (which are basically blocks in the
data matrix) on a student-item dataset would pair clusters
of student proficiency to clusters of item performance which
could be seen as a sort of a subject treatment interaction.

In the literature, it has been said that the real strength of co-
clustering is with binary valued data, co-occurrence tables
and basically in scenarios which involve collaborative filter-
ing. Hence, datasets which are basically a student by item
matrix would be an ideal candidate for trying out this tech-
nique. In the KDD Cup 2010 Töscher and Jahrer modelled
student response data as a collaborative filtering task and
used matrix factorization techniques for the same. Given
the connections of co-clustering with matrix factorization,
it is worth investigating how useful it could be in such a
setting.

In [3], the authors clustered students based on tutor interac-
tion features and then trained separate Knowledge Tracing
models for students based on the cluster they were in. This
was done so because it was not possible to cluster the item
sequences directly and an indirect approach had to be taken.
This co-clustering technique seems to give an alternative by
which such matrices might be clustered more readily with-
out the need to cluster the tutor interaction features.

In summary, in this paper we propose a bagging technique
that uses co-clustering and demonstrate that it’s perfor-
mance is better than that obtained by bagging using clus-
tering. We also suggest that it is most suitable for datasets
which are like co-occurrence tables and believe that it would
be a good direction for future work since such student-item
datasets are usually of this form.

Acknowledgements
The authors are indebted to all the funders listed over here
http://www.webcitation.org/5xp605MwY. The research of
the third author (Gábor Sárközy) is supported in part by
the National Science Foundation under Grant No. DMS-
0968699.

6. REFERENCES
[1] Felder, R.M., and Brent. R.,Understanding Student

Differences, Journal of Engineering Education, Vol. 94,
No. 1, 2005, pp. 57-72.

[2] Bransford, J.D., Brown, A.L., and Cocking, R., eds.,
How People Learn: Brain, Mind, Experience, and
School, Washington, D.C.: National Academy Press,
2000.

[3] Pardos, Z. A., Trivedi, S., Heffernan. N. T., and
Sárközy. G. N., Clustered Knowledge Tracing, In the
Proceedings of the 11th International Conference on In-
telligent Tutoring Systems 2012, Chania, Greece.

[4] Trivedi, S., Pardos, Z. A., Heffernan, N. T., Clustering
Students to Generate an Ensemble to Improve Standard
Test Score Predictions, G. Biswas et al. (Eds.): AIED
2011, LNAI 6738, In The proceedings of the 15th In-
ternational Conference on Artificial Intelligence in Ed-
ucation 2011, Auckland, New Zealand, pp. 377-384.

[5] Trivedi, S., Pardos, Z. A., Sárközy, G. N., Heffernan, N.
T., Spectral Clustering in Educational Data Mining, In
Proceedings of the 4th International Conference on Ed-
ucational Data Mining 2011, Eindhoven Netherlands,
pp. 129-138.

[6] Trivedi, S., Pardos, Z. A., and Heffernan, N. T., The
Utility of Clustering in Prediction Tasks, IEEE Trans-
actions on Systems, Man and Cybernetics, Part B: Cy-
bernetics (under review).

[7] Hartigan, J. A., Wong, M. A., Algorithm AS 136: A
K-Means Clustering Algorithm, Journal of the Royal
Statistical Society, Series C (Applied Statistics), 1979,
28 (1): pp. 100-108.

[8] Hartigan, J. A., Direct Clustering of a Data Ma-
trix, Journal of the American Statistical Association,
67(337): pp. 123-129, 1972.

[9] Dhillon, I. S., S, Mallela., and Kumar, R., A di-
visive Information-Theoretic Feature Clustering Algo-
rithm for text classication. Journal of Machine Learning
Research, 3(4): pp. 1265-1287, 2003.

[10] Dhillon, I. S., Co-clustering documents and words using
bipartite spectral graph partitioning. In Proceedings of
the 7th International Conference on Knowledge Discov-
ery and Data Mining, pp. 269-274, 2001.

[11] Hanisch, D., Zein, A., Zimmer, R., Lengauer, T., Co-
clustering of biological networks and gene expression
data. Bioinformatics 18 (Suppl.), 2002, pp. 145-154.

[12] D’Haeseleer, P., Liang, S., and Somoyogi, R., Genetic
Network Inference: From co-expression clustering to re-
verse engineering, Bioinformatics, 16, 2000, pp. 707-
726.

[13] George, T., and Merugu, S., A scalable collaborative
ltering framework based on co-clustering. In Proceed-
ings of the IEEE Conference on Data Mining, pp. 625-
628, 2005.

[14] Dhillon, I., Mallela, S., and Modha, D., Information-
theoretic co-clustering. In Proceedings of the 9th Inter-
national Conference on Knowledge Discovery and Data
Mining (KDD), pp. 89-98, 2003.

[15] Banerjee, A., Dhillon, I. S., Ghosh, J., Merugu, S., and
Modha, D. S, A Generalized Maximum Entropy Ap-
proach to Bregman Co-clustering and Matrix Approxi-
mation, Journal of Machine Learning Research, 8, pp.
1919-1198, 2007.

http://www.webcitation.org/5xp605MwY


[16] J. Shi, and J. Malik, Normalized Cuts and Image Seg-
mentation, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22 (8), pp. 888-905, 2000.

[17] Bengio, Y., Learning deep architectures for AI. Founda-
tions and Trends in Machine Learning, 2(1): pp. 1-127,
Now Publishers, 2009.

[18] Dietterich, T.G., Ensemble Methods in Machine Learn-
ing. In: Kittler, J., Roli, F. (eds.) First International
workshop on Multiple Classifier Systems. LNCS, pp. 1-
15. Springer, New York, 2000.

[19] Dietterich, T.G., An Experimental Comparison of
Three Methods for Constructing Ensembles of Decision
Trees: Bagging, Boosting, and Randomization, Ma-
chine Learning 40, pp. 139-157, 2000.

[20] Breiman, L., Random Forests, Machine Learning 45(1),
pp. 5-32, 2001.

[21] Grigerenko, E.L., Steinberg, R.J.: Dynamic Testing.
Psychological Bulletin 124, pp. 75-111, 1998.

[22] Campione, J. C., Brown, A. L.: Dynamic Assessment:
One Approach and some Initial Data. Technical Report.
No. 361. Cambridge, MA. Illinois University, Urbana,
Center for the Study of Reading. ED 269735, 1985.

[23] Feng, M., Heffernan, N.T., Koedinger, K.R.: Address-
ing the assessment challenge in an online system that
tutors as it assesses. User Modeling and User-Adapted
Interaction: The Journal of Personalization Research
19(3), 2009.

[24] Mohar, B., The Laplacian spectrum of graphs. In
Graph theory, combinatorics, and applications. Vol. 2
(Kalamazoo, MI, 1988), New York: Wiley, 1991, pp.
871-898.


	Introduction
	Co-Clustering
	Notation and Definitions
	Spectral Co-Clustering

	Bagging Strategy
	Clustering for Bootstrapping
	Co-Clustering for Bootstrapping
	Blending Predictions

	Experimental Validation
	Dataset Description and Context
	Experimental Results

	Discussion and Future Work
	REFERENCES 

