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ABSTRACT 
In recent years, the usefulness of affect detection for educational 
software has become clear. Accurate detection of student affect 
can support a wide range of interventions with the potential to 
improve student affect, increase engagement, and improve 
learning. In addition, accurate detection of student affect could 
play an essential role in research attempting to understand the root 
causes and impacts of different forms of affect. However, current 
approaches to affect detection have largely relied upon sensor 
systems, which are expensive and typically not physically robust 
to classroom conditions, reducing their potential real-world 
impact. Work towards sensor-free affect detection has produced 
detectors that are better than chance, but not substantially better—
especially when subject to stringent cross-validation processes. In 
this paper we present models which can detect student engaged 
concentration, confusion, frustration, and boredom solely from 
students' interactions within a Cognitive Tutor for Algebra. These 
detectors are designed to operate solely on the information 
available through students’ semantic actions within the interface, 
making these detectors applicable both for driving interventions 
and for labeling existing log files in the PSLC DataShop, 
facilitating future discovery with models analyses at scale. 

Keywords 
Educational data mining, affective computing, affect detection, 
boredom, engaged concentration, frustration, confusion, 
intelligent tutoring system 

1. INTRODUCTION 
In recent years, the log data collected through educational 
software such as intelligent tutoring systems has been a major 
resource for the educational data mining community [cf. 12; 33]. 
In specific, it has been possible to study changes in student 
learning and engagement over long periods of time by developing 
models using approaches such as classification or knowledge 
engineering and applying the models to larger data sets, a process 
termed “discovery with models.” Examples of this research 
include work to understand which models best predict student 
learning with an intelligent tutoring system [29; 38], work to find 
prerequisites within a curriculum [37], work to study the 
differences in engagement over the course of an entire year 
between urban, rural, and suburban schools [10], and work to 
study the differences in disengaged behavior between different 
tutor lessons [3]. 

Fewer research studies have focused on affect/academic emotions 
[30]. It is known that affect interacts with engagement and 
learning in complex fashions [cf. 7; 11; 21; 22; 26; 35]. However, 
research of this nature has largely been limited to relatively brief 
time-windows, on the order of a small number of lab sessions or 
field sessions. This limitation is due to the methods used in 
conducting these studies: self-report [cf. 1; 18; 35], retrospective 



 

emote-aloud protocols [cf. 19], field observations [cf. 7; 11; 22], 
and video observations [19, 21]. Each of these methods has been 
shown to produce replicable assessments of relevant academic 
affect, but each method also has limitations in terms of large-scale 
applicability. Specifically, self-report can disrupt naturally 
affective processes, and retrospective emote-aloud protocols, like 
observational methods, are expensive to conduct at large-scale. 

A method with the potential to address this limitation is automated 
detection of affect. Researchers have been investigating affect 
detection from physiological sensors or vocal patterns for over a 
decade, and have produced successful detectors for a range of 
emotions. Such work is reviewed in detail by Calvo and D’Mello 
[14, 15]. In the domain of educational research, researchers have 
used sensors to develop detectors for several affective constructs. 
Litman and Forbes-Riley have found that features of students’ 
voices while engaging in vocal dialogues with tutors can predict 
students’ emotions [27]. D’Mello and Graesser have shown that a 
combination of body language and facial features, in combination 
with student interaction with the learning software, can be used to 
detect learner affect [20]. Muldner, Burleson, and VanLehn have 
shown that a combination of sensors can be used to detect student 
delight while learning [28]. Finally, Arroyo and colleagues have 
shown that sensor-based approaches to affect detection can work 
in urban schools and classrooms, enabling real-time adaptation to 
students’ affect in an authentic learning setting [1]. 

However, approaches relying upon sensors are limited in 
application to data sets for which sensors were present. This limits 
applicability for schools, where sensor breakage can present a 
challenge for long-term use. In addition, sensor cost can be an 
economic challenge for schools, and internet connections may not 
have sufficient bandwidth to log full physiological sensor data for 
retrospective analysis. 

Hence, to achieve maximum utility of an affect detector for 
retrospective discovery with models analysis, it is necessary to 
detect affect without reference to any sensor data. Ideally, such 
detection will be conducted solely with the type of log file data 
already being collected at large scale, such as the data being 
collected in the PSLC DataShop repository [cf. 24].  

D’Mello and colleagues presented a first paper on an affect 
detector developed solely from log files [19]. Modeling student 
affect in the AutoTutor intelligent tutoring system in a laboratory 
study, they achieved decent agreement to ground-truth labels 
provided by human video coders. Their model successfully 
distinguished frustration from the neutral state approximately 40% 
better than the base rate (e.g. Kappa = approximately 0.4), and 
distinguished boredom, confusion, and flow from the neutral state 
approximately 20% better than chance. However, there were a 
few limitations in this pioneering study that need to be addressed 
to make sensor-free detectors of affect maximally useful. First, the 
detectors’ best performance was achieved when distinguishing 
between specific affective states and the neutral state (e.g. all 
other affective states were discarded from the data set). The 
detectors achieved relatively poorer performance (Kappa = 0.163) 
when attempting to distinguish affective states from each other. 
Second, they re-sampled the data to eliminate imbalance between 
classes, and validated their models on the re-sampled data. Re-
sampling is an appropriate method for generating unbiased 
classifiers, but the resultant models should ideally be tested on a 
non-resampled data set to verify detector effectiveness for future 
application of the models to data with natural class distribution. 
Third, their models were cross-validated at the observation level, 

rather than the student level, providing less information on 
detector generalizability to new students. Within this paper, we 
attempt to build on the methods in this pioneering research, while 
addressing these limitations. 

A second paper developing non-sensor-based detectors was 
presented by Conati and Maclaren, who conducted a laboratory 
study of affect in the game Prime Climb [18]. In this paper, 
detectors using a combination of questionnaire and log data were 
used to predict self-reports of student affect, using a Bayesian 
framework. The cross-validation in this paper was conducted at 
the student level, giving information on model applicability to 
new students. Also, affect was compared using a median-split on 
binary distinctions (such as the distinction between joy versus 
distress), avoiding bias that may stem from discarding data that is 
neither the current affective state being detected nor the neutral 
state.  

As in D’Mello et al. [19], Conati and Maclaren re-sampled the 
data to eliminate imbalance between classes during training. They 
validated their models using both the re-sampled distribution and 
the original distribution [18]. For the re-sampled data, their model 
was 32% better than the base rate at distinguishing between joy 
and distress, and 6% better than the base rate at distinguishing 
between admiration and reproach. However, their models 
achieved accuracy below the base rate when applied to the 
original distribution. This result indicates the challenge of 
achieving appropriate cross-validated performance for unbalanced 
constructs that are only indirectly reflected in student interaction 
within learning software.  

A third paper developing sensor-free affect detectors was 
presented by Sabourin, Mott, and Lester, who studied the affect of 
students using the Crystal Island narrative-centered learning 
environment, [34]. In this classroom study, as in Conati and 
Maclaren’s laboratory research [18], detectors based on a 
combination of questionnaire and log data were used to predict 
self-reports of student affect, using a Bayesian framework. As in 
[18], cross-validation was conducted at the student level. In 
addition, all relevant data was considered in model development 
and evaluation, and models were evaluated using the original data 
distribution rather than a re-sampled distribution. Their model was 
38% better than the base rate at identifying focused students, and 
24% better than the base rate at identifying curious students. It 
was less successful at identifying students who were confused 
(19% better than base rate), frustrated (14% better than base rate), 
bored (10% better than base rate), excited (8% better than base 
rate), although the detectors were better than the base rate for 
every construct except anxiety (3% worse than base rate). The 
only limitation for broad applicability of these models is the use 
of questionnaire measures, which require that a new student be 
given the same questionnaires for the model to be applied to that 
student.  
A fourth paper, by Lee and colleagues [40], presented a sensor-
free detector of confusion in a programming development 
environment. This detector achieved a very high student-level 
cross-validated Kappa of 0.86, but it is not clear if this detector 
was assessing the affective state of confusion or the more general 
experience of a student having difficulty with the material.  

Within this paper, we build automated detectors of affect for 
Cognitive Tutor Algebra I, a widely used learning environment. In 
doing so, we restrict ourselves to the data generally available for 
this learning environment in the PSLC DataShop [cf. 24], making 



 

it feasible to apply the resultant detectors to hundreds of 
thousands of hours of student data. Ground-truth labels are 
obtained using field observations of affect [7] conducted using a 
handheld app for the Android platform, and then synchronized 
with log files. The detectors are constructed using only log data 
from student actions within the software occurring at the same 
time as or before the observations. Affect is known to have 
different prevalence following specific behaviors [cf. 7; 11; 35], 
suggesting that a detector that takes this information into account 
may be more effective than one that does not. By using only 
information from before and during the observation, our detectors 
can be used for fail-soft interventions, as well as discovery with 
models analyses.  

2. METHODS 
2.1 Data Collection 
Data on student affect was collected from 89 students who were 
using Cognitive Tutor Algebra I as part of their regular 
mathematics curriculum. The students were using a lesson on 
systems of algebraic equations. Cognitive Tutors are a popular 
type of interactive learning environment now used by around half 
a million students a year in the USA. In Cognitive Tutors, 
students solve problems with exercises and feedback chosen based 
on a model of which skills the student possesses. Cognitive Tutor 
Algebra has been shown to significantly improve student 
performance on standardized exams and tests of problem-solving 
skill [25].  

Each of the students studied in this paper were enrolled in one of 
four classes in a high school in rural Western Pennsylvania. In this 
school, 67% of students are rated as proficient or higher on the 
PSSA standardized exam, moderately higher than the state 
average. Students in this school are 96% Caucasian, typical in 
rural schools in this region, but higher than the state average. 18% 
of students are eligible for free or reduced-price lunch, 
approximately half of the state average. Students studied were 
approximately balanced in terms of gender. 
 

 
Figure 1: The Systems of Equations A lesson, from Cognitive 

Tutor Algebra I, used in this study. 
Two expert field observers coded student affect and 
engaged/disengaged behaviors as students used the learning 
software. In this paper, we focus solely on the affect codes, as 
models of relevant engaged and disengaged behaviors were 
already available for this tutoring system (see discussion of 
features below). The coders used software on a Google Android 

handheld computer, which implemented an observation protocol 
developed specifically for the process of coding behavior and 
affect during use of educational software, replicating the protocol 
in [7]. All coding was conducted by the fourth and fifth authors. 
These two coders were previously trained in coding behavior and 
affect by the first author and have achieved inter-rater reliability 
with the first author of 0.72 (first and fourth authors, affect) and 
0.83 (first and fifth authors, behavior [cf. 6]) in previous research 
conducted with students using other learning environments. This 
degree of reliability is on par with Kappas reported by past 
projects that have assessed the reliability of detecting naturally 
occurring emotional expressions [7; 13; 27; 32]. 

Observations were conducted in the school’s computer laboratory, 
where students typically use the Cognitive Tutor software. 
Students were observed across 2 class days. Students were coded 
in a pre-chosen order, with each observation focusing on a 
specific student, in order to obtain the most representative 
indication of student affect possible. At the beginning of each 
class, an ordering of observation was chosen based on the 
computer laboratory’s layout, and was enforced using the hand-
held observation software. Setting up observations took a few 
minutes at the beginning of each class. A total of 408.51 minutes 
of observations were conducted across sessions, across the two 
coders. During this time, 763 observations were conducted across 
all students, not counting observations of students who were not 
logged into the software or not present in the classroom, for an 
average of 8.57 observations per student (SD = 2.84). 
Each observation lasted up to twenty seconds, with observation 
time automatically coded by the handheld observation software. If 
affect and behavior were determined before twenty seconds 
elapsed, the coder moved to the next observation. Typically, each 
student observation involved 5 taps to the handheld screen, with 
the coder choosing affect and behavior codes from a pair of pop-
up menus, and then clicking to confirm their selection. As such, 
data entry by an experienced coder took approximately 3 seconds 
per observation.  

Each observation was conducted using peripheral vision or side-
glances to reduce disruption. That is, the observers stood 
diagonally behind the student being observed and avoided looking 
at the student directly [cf. 5; 7; 32], in order to make it less clear 
when an observation was occurring. This method of observing 
using peripheral vision was previously found to be successful for 
assessing student behavior and affect, achieving good inter-rater 
reliability [cf. 6, 7; 32]. To increase tractability of both coding and 
eventual analysis, if two distinct affective states were seen during 
a single observation, only the first state observed was coded. Any 
affect of a student other than the student currently being observed 
was not coded. 

The observers based their judgment of a student’s state or 
behavior on the student’s work context, actions, utterances, facial 
expressions, body language, and interactions with teachers or 
fellow students. These are, broadly, the same types of information 
used in previous methods for coding affect [e.g. 13], and in line 
with Planalp et al’s [31] descriptive research on how humans 
generally identify affect using multiple cues in concert for 
maximum accuracy rather than attempting to select individual 
cues. The judgments of affect were based on a sub-set of the 
coding scheme used in [7; 21], selected based on importance for 
learning. Within an observation, each observer coded affect with 
reference to five categories:  



 

• Boredom 

• Confusion 

• Engaged concentration (the affect associated with the 
flow state [cf. 7])   

• Frustration 

• “?” (which refers to any affect outside the coding 
scheme, including eureka, delight, and surprise. It also 
includes cases where it was impossible to code affect, 
such as when a student went to the bathroom or the 
software crashed.)  

Delight and surprise were removed from the earlier coding 
scheme in [7; 21], due to the relative rarity of these affective 
states in prior research [e.g. 7; 21; 32].  

Within the observations, the affective states had the following 
frequencies: boredom was observed 5.9% of the time, engaged 
concentration was observed 84.5% of the time, frustration was 
observed 0.9% of the time, and confusion was observed 1.8% of 
the time. The remaining observations were coded as “?”. This 
distribution of affect is in line with prior studies – engaged 
concentration is typically the most common affect in classroom 
learning [cf. 7; 10; 34]. However, confusion, which tends to be 
relatively rare in most cases, was somewhat less frequent than has 
been typically seen in previous classroom studies [cf. 7; 10; 34].  

2.2 Feature Distillation 
In order to distill a feature set for detectors of affect, student 
actions within the software were synchronized to the field 
observations. Only the types of data available in standard PSLC 
DataShop log files [cf. 24] were used, towards producing 
detectors that could be applied retrospectively to existing data at 
scale. 

During data collection, both the handhelds and the educational 
software server were synchronized to the same internet-time 
server. Actions during the twenty seconds prior to data entry by 
the observer were collected as a clip.  

A total of 58 features were developed using the student’s behavior 
both during and prior to the 20-second window. Some features 
were completely about the current action, such as whether it was 
correct or not. Other features, such as the number of previous 
actions on the current skill that involved help requests, involved 
data from the student’s past performance. These 58 features were 
aggregated across the actions within the clip using mean, min, 
max and sum aggregators, hence a total of 232 features were used 
in the development of the detectors. Features involving past 
behavior (such as the number of previous actions on the current 
skill that involved help requests) are likely to have little change 
during the course of a clip, but were aggregated in the same 
fashion for simplicity of implementation.  

Using both features on the current clip and features involving past 
data has the potential to help us detect affect more effectively, as 
there is evidence that the prevalence of specific affective states is 
different following specific behaviors [7; 10; 35] during real-
world learning.  
Features were drawn from two sources:  

• Features developed during our group’s past work to 
develop behavior detectors in Cognitive Tutors [cf. 2; 4; 
8], averaged across actions in the clip (or min or max 
across actions), or across actions prior to the clip. 

• Prior models of disengaged and engaged behaviors 
previously developed for this tutor or related tutors [cf. 
2; 4; 8; 36]. Engaged and disengaged behaviors are 
known to precede and co-occur with affect, giving 
potential leverage for detecting affect. 

Examples of features used can be seen in Table 2. 

2.3 Machine Learning Algorithms 
Each affective state was predicted separately – e.g. BORED was 
distinguished from NOT BORED (e.g. all other affective states), 
FRUSTRATED was distinguished from NOT FRUSTRATED 
(e.g. all other affective states), and so on. This resulted in four 
detectors, one for boredom, confusion, engaged concentration, 
and frustration respectively.  

Each detector was evaluated using six-fold student-level cross-
validation [cf. 17; 34]. In this process, students are split randomly 
into six groups. Then, for each possible combination, a detector is 
developed using data from five groups of students before being 
tested on the sixth “held out” group of students. By cross-
validating at this level, we increase confidence that detectors will 
be accurate for new students.  

For each construct being detected, a separate student-level cross-
validation was conducted, which stratified students based on the 
dependent variable. This procedure was used in order to guarantee 
that each fold had a representative number of observations of the 
majority and minority class. In addition, for unbalanced classes, 
re-sampling was used to make the class frequency more equal for 
detector development. However, all goodness calculations were 
made with reference to the original data set, as in Sabourin et al. 
[34]. 

We attempted to fit sensor-free affect detectors using eight 
common classification algorithms that have been successful for 
past educational data mining problems, including J48 decision 
trees, step regression, JRip, Naïve Bayes, and REP-Trees. 

Feature selection for machine learning algorithms was conducted 
using forward selection, where the feature that most improves 
model goodness is added repeatedly until adding additional 
features no longer improves model goodness. During feature 
selection, cross-validated kappa on the original (e.g. non-re-
sampled) data set was used as the goodness metric. Prior to 
feature selection, all features with cross-validated kappa equal to 
or below zero in a single-feature model were omitted from 
consideration, as a check on over-fitting. 

Detector goodness was assessed using two metrics: Cohen’s 
Kappa [17] and A’ [23]. Cohen’s Kappa assesses the degree to 
which the detector is better than chance at identifying which clips 
involve a specific affective state. A Kappa of 0 indicates that the 
detector performs at chance, and a Kappa of 1 indicates that the 
detector performs perfectly.  For example, a Kappa of 0.31 would 
indicate that the detector is 31% better than chance. A’ is the 
probability that the algorithm will correctly identify whether a 
specific affective state is present or absent in a specific clip. A' is 
equivalent to both the area under the ROC curve in signal 
detection theory, and to W, the Wilcoxon statistic [23]. A model 
with an A' of 0.5 performs at chance, and a model with an A' of 
1.0 performs perfectly. In these analyses, A’ was computed at the 
level of clips, rather than students, using the AUC (area under the 
curve) approximation. 



 

3. RESULTS 
Detector performance for all four constructs studied was better 
than chance (see discussion of cross-validation methodology in 
the previous section), but left room for improvement. Full results 
are shown in Table 1. For engaged concentration, the best 
algorithm was K*. The engaged concentration detector achieved 
an A’ of 0.71 and a Kappa of 0.31. For confusion, the best 
algorithm was JRip. The confusion detector achieved an A’ of 
0.99 and a Kappa of 0.40. For frustration, the best algorithm was 
REPTree. The frustration detector achieved an A’ of 0.99 and a 
Kappa of 0.23. For boredom, the best algorithm was Naïve Bayes. 
The boredom detector achieved an A’ of 0.69 and a Kappa of 
0.28. 
Several of these detectors showed an imbalance between A’ and 
Kappa. Imbalance of this nature typically indicates a detector 
which is better at getting the relative order between classes correct  
(in its confidence estimates) than at drawing an optimal line 
between classes. Using detectors of this nature, whether for 
intervention or discovery with models analyses, will be more 
effective if confidence is taken into account. 

Features automatically selected for each of the detectors during 
machine learning are listed in Table 2. Full detail on models, 
including runnable versions of the models (for RapidMiner 4.6) 
can be found in the PSLC DataShop [24], in data set “Baker – 
Closing the Loop on Gaming – Hopewell Spring 2011”, at 
(https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=479). 
This data set also includes all data used in the analysis, distilled 
features used to develop the detectors, data from the field 
observations synchronized with the student interaction data, and 
the detector’s predictions for actions not initially labeled through 
the field observations.  

The features for engaged concentration involve actions where the 
student was more likely to have a history of few errors and help 
requests on the skills in the clip. When a student is in engaged 
concentration and requests help, they typically do not follow it up 
with an error (e.g. they read the hints carefully; while they might 
also have been gaming the tutor’s hints, gaming typically results 
in some proportion of errors, as students do not read hints  

 
 A’ Kappa 
Engaged Concentration 0.71 0.31 
Confusion 0.99 0.40 
Frustration 0.99 0.23 
Boredom 0.69 0.28 
Average Across Constructs 0.85 0.30 
Table 1: The goodness of each final model, under student-level 

cross-validation, for the original data set. 
 
carefully). These features suggest a student who is closely 
engaged and working effectively. 

The features for confusion suggest a struggling student [cf. 26]. A 
confused student is more likely to have a pattern of slower actions 
after making two errors and tend to have a history of more 
incorrect actions and help requests. Furthermore, his or her correct 
actions are relatively more likely to represent guesses,  
 

Engaged Concentration 
The minimum number of previous incorrect actions and help 
requests for any skill in the clip.   
Among the skills involved in the clip, the minimum value for 
previous incorrect actions and help requests for that skill. 
The duration (in seconds) of the fastest action in the clip. 
The percentage of clip actions involving a hint followed by an 
error. 

 
Boredom 

The average time the student took to respond on the current step 
prior to the clip, averaged across all the actions with a clip.  
The average time the student took to respond, unitized across time 
taken by all students on the same problem steps, within sequences 
of three actions in a row. 
The maximum product of the probability of moment-by-moment 
learning P(J) [9], and the probability of guess P(G) calculated 
using the contextual guess model [4] for any action in the clip. 
This can be interpreted as actions where the student learned after 
guessing.  
The maximum number of previous incorrect actions and help. 
requests for any skill in the clip.    
 

Confusion 
The percentage of clip actions involving actions taking longer 
than 5 seconds after two incorrect answers.  
The percentage of actions in the clip that were hint requests.  
The minimum number of previous incorrect actions for any skill 
in the clip.  
The maximum product of the probability of guess P(G) as 
computed using contextual guess model [4], across sequences of 
three actions in a row. 
The average time the student took to respond, unitized across time 
taken by all students on the same problem steps, within sequences 
of five actions in a row that were correct.   
 

Frustration 
The percent of past actions on the skills involved in the clip that 
were incorrect. 
Were there any actions in the clip where the student made a wrong 
answer rather than requesting help when their probability of 
knowing the skill was under 0.7?  
Table 2. The features in the final detectors of each construct.  

 
using the contextual guess model from [4]. On the other hand a 
student who is not confused tends to be able to successfully 
answer 5 items in rows, working slowly. 

The features for frustration involve incorrect actions and help 
avoidance. In particular, frustrated students tend to have a history 
of past incorrect actions and help requests. Curiously, frustrated 
students are more likely to avoid help and make errors when they 
do not know the skill. It is unclear whether this behavior is a result 
of frustration, or whether it is perhaps a cause of frustration. 



 

The features for boredom are interestingly different than the 
features for other constructs. Bored students were more likely to 
guess than other students. Interestingly, though, they were also 
relatively likely to learn from their guesses. Compared to other 
students, bored students were relatively less likely to have a 
history of many errors and help requests. In addition, students 
who were bored had a past history of working slowly, and worked 
slowly while they were bored, across multiple actions within the 
tutor software. 

4. DISCUSSION AND CONCLUSIONS 
In this paper, we have presented automated detectors that are a 
step towards identifying student affect solely from log files, in a 
Cognitive Tutor for Algebra. These detectors are better than 
chance at identifying engaged concentration, confusion, 
frustration, and boredom, among a population of students using 
the Cognitive Tutor as part of their regular mathematics classes.  

These detectors achieve goodness values that are moderately 
better than past values obtained through sensor-free detectors, 
when averaged across constructs. In this study, the average 
detector Kappa was 0.30. The detectors closest in validation to 
this study within D’Mello et al. [19], albeit in a different domain, 
achieved an average Kappa of 0.16. The detectors closest in 
validation to this study within Conati & Maclaren [18] achieved 
an average accuracy below the base rate, and detectors validated 
on re-sampled data achieved an average accuracy that was 19% 
better than the base rate (approximately comparable to Kappa of 
0.19). The detectors in Sabourin et al. [34], validated in the same 
fashion as these detectors, achieved an average accuracy that was 
16% better than the base rate (approximately comparable to 
Kappa of 0.16). Individual detectors from previous studies 
performed better than the detectors presented here (e.g. frustration 
in [19], focused/engaged concentration in [34]), but on the 
average the detectors presented here performed better than 
detectors presented in previous papers. While comparison of 
model goodness obtained in different software platforms, age 
groups, and populations should be done with caution, the 
detectors presented here appear to represent further progress 
towards effective, sensor-free detectors of affect.  

It is possible that at least part of this progress is the result of a 
greater degree of feature engineering in this detector’s 
development, including the use of features previously used to 
detect disengaged behaviors, and existing models of several 
potentially relevant constructs such as guessing [4]. These results 
suggest that by using both the detectors of disengaged behaviors 
known to be associated with affect as features and the features 
used to produce those detectors, increased detector goodness can 
be obtained with acceptable construct validity.  

At the same time, our affect detectors are clearly still imperfect.  
These new features have only achieved 30% of potential progress 
towards perfect detection, and, while perfect detection is probably 
infeasible (after all, even expert coders only achieve Kappa values 
around 0.6 or 0.7), there is clearly substantial room for 
improvement. Further work should consider further feature 
engineering, and potentially alternate methods for aggregating 
data. Continued improvement in terms of feature engineering may 
be supported by further research on the behaviors that correspond 
to specific affective states [cf. 7; 11; 35].  

In addition, there is considerable work needed in the area of cross-
validation. The detectors presented here are developed and 
validated for a single, fairly homogenous population. As such, 

their validity for the broad and diverse population of learners 
using Cognitive Tutor Algebra in the USA has not yet been fully 
established. Likewise, the detectors are developed within the 
context of a single Cognitive Tutor lesson. As such, the detector’s 
validity for new curricular materials has not been established. The 
detectors may indeed be generalizable and usable in new contexts, 
as past detectors of disengaged behaviors have often been found 
to be (for instance, in their use within the detectors presented 
within this paper), but establishing generalizability will be an 
important area of future work.  

One positive note for the applicability of these detectors in other 
populations and domains is that the behaviors identified by each 
detector have reasonable construct validity, suggesting that the 
detectors may be less accurate in these contexts, but are unlikely 
to provide meaningless predictions. For this reason, it may still be 
appropriate to use these detectors in discovery with models 
analyses, with the expectation that the strength of correlations 
may be reduced, but that findings with high strength are unlikely 
to be wholly spurious. The detectors can also be used immediately 
in the development of detectors of other constructs, as behavior 
detectors were used here.  In these cases, the validity of the 
detectors is shown by their relevance to detecting other constructs. 
Thus, though the detectors are imperfect, they still may prove a 
useful component for EDM research. As these detectors predict 
affect solely using log file data, they can be applied to existing 
data from Cognitive Tutor Algebra in the PSLC DataShop and 
elsewhere. As hundreds of thousands of students use this software 
each year, we believe that many analyses can be accomplished 
with these detectors and look forward to working with colleagues 
to accomplish this goal. 

Similarly, it may be possible to incorporate these detectors into 
the Cognitive Tutor software for fail-soft interventions, which 
could be used to advance learning outcomes.  

In the long-term, detectors of this nature are likely to provide a 
useful tool for understanding and automatically adapting to 
differences in learner affect. We see the work here as an 
incremental step, following on the pioneering work of D’Mello 
and colleagues [19], Conati and Maclaren [18], and Sabourin, 
Mott, and Lester [34] towards this goal.  
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