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Over the last few decades, there have been a rich variety of approaches towards modeling student knowledge 
and skill within interactive learning environments. There have recently been several empirical comparisons as 

to which types of student models are better at predicting future performance, both within and outside of the 

interactive learning environment. A recent paper (Baker et al., in press) considers whether ensembling can 

produce better prediction than individual models, when ensembling is performed at the level of predictions of 

performance within the tutor. However, better performance was not achieved for predicting the post-test. In this 

paper, we investigate ensembling at the post-test level, to see if this approach can produce better prediction of 
post-test scores within the context of a Cognitive Tutor for Genetics. We find no improvement for ensembling 

over the best individual models and we consider possible explanations for this finding, including the limited 

size of the data set. 
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General Terms: Student modeling, ensemble methods, Bayesian Knowledge-Tracing, Performance Factors 
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1. INTRODUCTION 
In recent years, there has been a vigorous debate as to which approach for assessing 

student knowledge and skill within interactive learning environments achieves the most 

precise assessment of students! latent knowledge and skills. This debate has been 

particularly vigorous for the relatively simple case of intelligent tutoring systems where 

each item is related to a single skill, and for which the item-skill mapping has been well-

developed (the issue of how to develop these item-skill mappings is of course a key issue 

in its own right " cf. Barnes, Bitzer, & Vouk, 2005). For this problem, recent 

comparisons have studied the difference between variants of Bayesian Knowledge 

Tracing (Baker, Corbett, & Aleven 2008), the differences between variants of Bayesian 

Knowledge Tracing and Performance Factors Analysis (Pavlik, Cen, & Koedinger; 2009; 

Gong, Beck, & Heffernan, 2010), and the differences between these algorithms and 

baseline approaches such as average performance and lookups based on the correctness 

of the previous three actions (Baker et al., in press). However, these comparisons have 

often had contradictory results, likely due to differences between the tutoring systems, 

populations studied, and exact methods used to make comparisons. 

Based on the contradictory results of these comparisons, Baker et al. (in press) 

proposed that it might be more productive to ensemble the available algorithms (cf. 

Dietterich, 2000) rather than attempting to determine which algorithm is best. Within 

ensemble methods, multiple models are integrated into a single predictor. Ensemble 
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methods often achieve better performance than single algorithms, since they are able to 

leverage each algorithm!s strengths in different contexts (Dietterich, 2000; Niculescu-

Mizil et al., 2009). In their attempt to do this, Baker and colleagues selected nine 

algorithms predicting student performance and latent knowledge within intelligent 

tutoring systems, and evaluated the success of simple linear and logistic ensembling 

methods in data from a Cognitive Tutor for Genetics. This paper conduced ensembling at 

the level of individual student actions within the tutor (e.g. each model!s prediction of 

latent student knowledge at a given time within the tutor was ensembled into a single 

prediction of latent student knowledge). The results were mixed; depending on what 

assumptions were used, ensemble models were either slightly more successful or slightly 

less successful than the best single model. In addition, multiple individual models were 

more successful at predicting post-test scores than ensembling conducted in this fashion. 

However, it is known that tutor performance often does not perfectly match post-test 

performance, and that models trained to predict performance within the tutor software 

often over-predict post-test performance (Corbett & Anderson, 1995). Predicting post-test 

scores is important, as it provides a test not just of what students can do within the tutor, 

but also what knowledge they transfer outside of the tutor software. Recent analyses have 

also suggested that combining assessment of student knowledge with assessments of 

student slipping/carelessness can lead to more accurate prediction of post-test 

performance (Baker et al., 2010). Hence, it may be possible to use ensemble methods to 

better predict post-test performance by ensembling predictions of post-test scores, 

including predictions of post-test related constructs such as slipping, instead of 

ensembling predictions of within-tutor performance. To this end, within this paper, we 

compare the predictive power of ensemble models and single models for predicting post-

test performance among students learning from a Cognitive Tutor. 

2. STUDENT MODELS USED 

2.1 Bayesian Knowledge-Tracing
Corbett & Anderson!s (1995) Bayesian Knowledge Tracing model is one of the most 

popular methods for estimating students! knowledge. It underlies the Cognitive Mastery 

Learning algorithm used in Cognitive Tutors for Algebra, Geometry, Genetics, and other 

domains (Koedinger & Corbett, 2006).  

The canonical Bayesian Knowledge Tracing (BKT) model assumes a two-state 

learning model: for each skill/knowledge component the student is either in the learned 

state or the unlearned state. At each opportunity to apply that skill, regardless of their 

performance, the student may make the transition from the unlearned to the learned state 

with learning probability . The probability of a student going from the learned state 

to the unlearned state (i.e. forgetting a skill) is fixed at zero. A student who knows a skill 

can either give a correct performance, or slip and give an incorrect answer with 

probability . Similarly, a student who does not know the skill may guess the correct 

response with probability . The model has another parameter, , which is the 

probability of a student knowing the skill from the start. After each opportunity to apply 

the rule, the system updates its estimate of student!s knowledge state, , using the 

evidence from the current action!s correctness and the probability of learning:
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The four parameters of BKT, (  and , are learned from 

existing data, historically using curve-fitting (e.g. Corbett & Anderson, 1995), but more 

recently using expectation maximization (BKT-EM) (Chang et al., 2006) or brute 

force/grid search (BKT-BF) (cf. Baker et al., 2010; Pardos & Heffernan, 2010). Within 

this paper we use BKT-EM and BKT-BF as two different models in this study. Within 

BKT-BF, for each of the 4 parameters all potential values at a grain-size of 0.01 are tried 

across all the students (for e.g.: 0.01 0.01 0.01 0.01, 0.01 0.01 0.01 0.02, 0.01 0.01 0.01 

0.03## 0.99 0.99 0.3 0.1). The sum of squared residuals (SSR) is minimized. For BKT-

BF, the values for Guess and Slip are bounded in order to avoid the $model degeneracy% 

problems that arise when performance parameter estimates rise above 0.5 (Baker, 

Corbett, & Aleven, 2008). For BKT-EM the parameters were unbounded and initial 

parameters were set to a  of 0.14, of 0.09, of 0.50, and of 0.14, a 

set of parameters previously found to be the average parameter values across all skills in 

modeling work conducted within a different tutoring system. 

In addition, we include three other variants on BKT. The first variant changes the 

data set used during fitting. BKT parameters are typically fit to all available students! 

performance data for a skill. It has been argued that if fitting is conducted using only the 

most recent student performance data, more accurate future performance prediction can 

be achieved than when fitting the model with all of the data (Pardos & Heffernan, in 

press). In this study, we included a BKT model trained only on a maximum of the 15 

most recent student responses on the current skill, BKT-Less Data (Nooraei B et al., in 

press). 

The second variant, the BKT-CGS (Contextual Guess and Slip) model, is an 

extension of BKT (Baker, Corbett, & Aleven, 2008). In this approach, Guess and Slip 

probabilities are no longer estimated for each skill; instead, they are computed each time 

a student attempts to answer a new problem step, based on machine-learned models of 

guess and slip response properties in context (for instance, longer responses and help 

requests are less likely to be slips). The same approach as in (Baker, Corbett, & Aleven, 

2008) is used to create the model, where 1) a four-parameter BKT model is obtained (in 

this case BKT-BF), 2) the four-parameter model is used to generate labels of the 

probability of slipping and guessing for each action within the data set, 3) machine 

learning is used to fit models predicting these labels, 4) the machine-learned models of 

guess and slip are substituted into Bayesian Knowledge Tracing in lieu of skill-by-skill 

labels for guess and slip, and finally 5) parameters for P(T) and  are fit.  

Recent research has suggested that the average Contextual Slip values from this 

model, combined in linear regression with standard BKT, improves prediction of post-

test performance compared to BKT alone (Baker et al., 2010). Hence, we include average 

Contextual Slip so far as an additional potential model.  

The third BKT variant, the BKT-PPS (Prior Per Student) model, breaks from the 

standard BKT assumption that each student has the same incoming knowledge, 

.This individualization is accomplished by modifying the prior parameter for each 

student with the addition of a single node and arc to the standard BKT model (Pardos & 
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Heffernan, 2010). The model can be simplified to only model two different student 

knowledge priors, a high and a low prior. No pre-test needs to be administered to 

determine which prior the student belongs to; instead their first response can be used. If a 

student answers their first question of the skill incorrectly they are assumed to be in the 

low prior group. If they answer correctly, they assumed to be in the high prior group. The 

prior of each group can be learned or it can be set ad-hoc. The intuition behind the ad-hoc

high prior, conditioned upon first response, is that it should be roughly 1 minus the 

probability of guess. Similarly, the low prior should be equivalent to the probability of 

slip. Using PPS with a low prior value of 0.10 and a high value of 0.85 has been shown to 

lead to improved accuracy at predicting student performance (Pardos & Heffernan, 

2010).  

2.2 Tabling
A very simple baseline approach to predicting a student!s performance, given his or her 

past performance data, is to check what percentage of students with that same pattern of 

performance gave correct answer to the next question. That is the key idea behind the 

student performance prediction model called Tabling.

In the training phase, a table is constructed for each skill: each row in that table 

represents a possible pattern of student performance in  most recent data points. For 

 (which is the table size used in this study), we have 8 rows: 000, 001, 010, 011, 

100, 101, 110, 111. (0 and 1 represent incorrect and correct responses respectively.) For 

each of those patterns we calculate the percentage of correct responses immediately 

following the pattern. For example, if we have 47 students that answered 4 questions in a 

row correctly (111 1), and 3 students that after answering 3 correct responses, failed on 

the 4th one, the value calculated for row 111 is going to be 0.94 (47/(47+3)). When 

predicting a student!s performance, this method simply looks up the row corresponding 

to the 3 preceding performance data, and uses the percent correct value as its prediction. 

2.3 Performance Factor Analysis
Performance Factors Analysis (PFA) (Pavlik, Cen, & Koedinger, 2009) is a logistic 

model, an elaboration of the Rasch item response model, which predicts student 

performance based on the student!s number of prior failures f and successes s for that 

skill, with skill-specific weightings  and  for failures and successes. PFA also includes 

an overall difficulty parameter  for each skill or item, depending on the formulation. 

Within this paper, we fit  at the skill level. The PFA equation is: 

2.4 CFAR
CFAR, which stands for $Correct First Attempt Rate%, is an extremely simple algorithm 

for predicting student knowledge and future performance, utilized by the winners of the 

educational data KDD Cup in 2010 (Yu et al., 2010). The prediction of student 

performance on a specific knowledge component (KC) is the student!s average 

correctness on that KC, up until the current point.  

3. GENETICS DATA SET 
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Fig.1 The Three-Factor Cross lesson of the Genetics Cognitive Tutor 

The dataset contains the results of in-tutor performance data of 76 students on 9 different 

skills, with data from a total of 23,706 student actions (entering an answer or requesting 

help). This data was taken from a Cognitive Tutor for Genetics (Corbett et al., 2010). 

This tutor consists of 19 modules that support problem solving across a wide range of 

topics in genetics (Mendelian transmission, pedigree analysis, gene mapping, gene 

regulation and population genetics). Various subsets of the 19 modules have been piloted  

at 15 universities in North America.  

This data set is drawn from a Cognitive Tutor lesson on three-factor cross, shown in 

Figure 1. In three factor-cross problems, two organisms are bred together, and then the 

patterns of phenotypes and genotypes on a chromosome are studied. In particular, the 

interactions between three genes on the same chromosome are studied. During meiosis, 

segments of the chromosome can $cross over,% going from one paired chromosome to the 

other, resulting in a different phenotype in the offspring than if the crossover did not 

occur. Within this tutor lesson, the student identifies, within the interface, the order and 

distance between the genes on the chromosome by looking at the relative frequency of 

each pattern of phenotypes in the offspring. The student also categorizes each phenotype 

in terms of whether it represents the same genotype as the parents (e.g. no crossovers 

during meiosis), whether it represents a single crossover during meiosis, or whether it 

represents two crossovers during meiosis.  

In this study, 76 undergraduates enrolled in a genetics course at Carnegie Mellon 

University used the three-factor cross module as a homework assignment. The 76 

students completed a total of 23,706 problem solving attempts across 11,582 problem 

steps in the tutor. On average, each student completed 152 problem steps (SD=50). In the 

first session, students were split into four groups with a 2x2 design; half of students spent 

half their time in the first session self-explaining worked examples; half of students spent 

half their time in a forward modeling activity. Within this paper, we focus solely on 

behavior logged within the problem-solving activities, and we collapse across the original 

four conditions.  
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The post-test, given on paper-and-pencil, consisted of four activities: a 

straightforward problem-solving post-test, a transfer test, a test of preparation for future 

learning, and a delayed retention test. Each of the two problems on the problem-solving 

test (administered at pre-test and post-test) consisted of 11 steps involving 7 of the 9 

skills in the Three-Factor Cross tutor lesson, with two skills applied twice in each 

problem and one skill applied three times. The average performance on the pre-test was 

0.33, with a standard deviation of 0.2. The average performance on the post-test was 

0.83, with a standard deviation of 0.19. This provides evidence for substantial learning 

within the tutor, with an average pre-post gain of 0.50. 

4. ENSEMBLE METHODS 
The premise behind ensembling is to combine the prediction of different models such that 

the combination results in a more accurate prediction than any single model could 

produce. We evaluated six methods of combining post-test predictions to investigate the 

utility of ensembling with our dataset. The six methods evaluated were: Uniform 

averaging, linear regression, stepwise regression, stepwise model selection with uniform 

averaging, logistic regression and Random Forests (Brieman, 2001). More detail on the 

trade-offs between different methods for ensembling can be found in (Dietterich, 

2000;Brown, Wyatt, & Tino, 2005). A description of each method is as follows: 

Uniform averaging: Uses the mean of the 9 model predictions. While this is the most 

simple approach, it is also the only approach that is not susceptible to overfitting (since it 

does not use any form of training). 

Linear regression: Fits coefficients to each model!s prediction. This approach assumes 

that there is a linear weighting of models that can lead to better prediction. Predictions 

lower than zero are changed to zero and predictions higher than one are changed to one. 

Stepwise regression: The same as linear regression except that this approach removes 

models that are not significantly contributing to a decrease in training set error. 

Stepwise model selection with uniform averaging: Uses stepwise regression to remove 

bad models and then averages the prediction of the remaining models. This approach 

assumes that model selection could be useful but that fitting coefficients might overfit. 

Logistic regression: Similar to linear regression except that coefficients are fit based on a 

logistic curve. The logistic function outputs probabilistic values (between 0 and 1). 

Random Forests: Trains many decision trees, each based on a random sampling of 

models and random resampling of the data, and then averages each decision tree!s 

prediction. This is the only ensemble technique we evaluate which combines model 

predictions non-linearly. Default MATLAB parameters were used with 20 trees. 

Each ensembling method was evaluated with 5-fold cross validation, where four folds 

were used to train and one to test (note that cross-validating uniform averaging has no 

impact on goodness of fit, since no training occurs). The same fold assignments were 

used for this cross-validation as for training and testing the 9 individual models. 

simplicity we decided not to use ensemble methods which have parameters that need to 

be tuned such as Neural Networks and Support Vector Machines. This would have added 

yet another level of cross-validation within the training set. The effectiveness of those 

methods is a topic for future exploration. 

4.1 Using Ensemble Methods in the Real World
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It is worth noting that, in evaluating these methods, different forms of cross-validation 

are required for ensembles versus for the individual models. The individual models are 

cross-validated at the action level, when the models are trained. They are not fit to the 

post-test performance, and thus are not cross-validated at this level. However, in 

ensembling, it is necessary to cross-validate, because fitting occurs at this level. 

This form of cross-validation fits to how ensemble methods would typically be used 

for this problem in the real world. Typically, intelligent tutors use knowledge-tracing (or 

other assessment) model parameters trained based on data from a previous cohort of 

students. The tutor software then traces the current year!s student responses and makes 

predictions about their knowledge on the post-test. In predicting post-test scores, an 

individual model!s predictions can be used (and currently, this is the approach commonly 

used). If a researcher wanted to integrate multiple models in predicting the post-test, 

uniform averaging could be used post-hoc but with no fitting, in a direct fashion. Neither 

of these approaches risk over-fitting, as neither use the post-test data to make predictions.  

However, if the researcher wanted to use ensembling methods as discussed above, one 

way to do so without risk of over-fitting would be to conduct ensembling using a 

previous cohort!s post-test data, and then to apply the ensembled model to the current 

cohort!s data. The success of the ensembling approach relies on whether the weights 

learned from last year!s data generalize to this year!s data. If the ensemble selection is 

generalizable, it should perform better than uniform averaging and also better than the 

single model predictions, for the new population. In our analysis, the previous cohort!s 

data is analogous to the four training folds of the 5-fold cross validation whereas the fifth 

fold, the test fold, represents the current cohort of students. 

5. RESULTS 
In predicting the post-test using individual model we calculate the n+1 predictions for 

each skill and student, by applying the rule, where time n equals the last student action in 

the tutor, and time n+1 equals the student!s action after the last action in the tutor (e.g. 

their action on the post-test): 

P(correctn+1) = P(Ln) * (1 " P(S)) + (1 " P(Ln)) * P(G) 

After applying the above rule, we account for the number of times each skill is used in 

the post-test. Of the eight skills in the tutor lesson, one is not exercised on the test, and is 

eliminated from the individual models predicting the post-test. Of the remaining seven 

skills, one is exercised three times, two are exercised twice and four skills are exercised 

once, in each of the post-test problems. In order to predict the post-test with maximal 

accuracy, we weight the tutor!s prediction of student knowledge of each skill in line with 

the number of times it appears in the post-test. As each of the individual models can 

already predict performance on the n+1 step, the opportunity to practice after tutor usage, 

we do not fit any function to post-test using the individual models; hence the cross-

validation gives the same results as not using cross-validation. We use RMSE (root mean 

squared error) and the Pearson correlation between the model predictions and post-test 

score, as the model estimates and the post-test scores are both numeric.  

As seen in table I, the individual model with the best value of RMSE for predicting 

the post-test is CFAR, achieving an RMSE of 0.1636 and a correlation of 0.533 to the 

post-test. However, although BKT-LessData, BKT-EM, and BKT-BF perform slightly 

worse in terms of RMSE, achieving RMSEs between 0.1754 and 0.1834, each of them 
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achieves better correlation to the post-test than CFAR. The model with the best 

correlation to the post-test is BKT-LessData, achieving a correlation of 0.565.  

Table I. RMSEs and Correlations between the individual models and the post-test, sorted on RMSE 

Model RMSE Correlation  

AvgCFAR 0.1636 0.5326 

Avg-BKT-LessData 0.1754 0.5646 

Avg-BKT-EM 0.1781 0.5518 

Avg-BKT-BF 0.1834 0.5476 

Avg-BKT-PPS 0.1840 0.4988 

AvgPFA 0.1895 0.3243 

AvgTabling 0.1901 0.2719 

Avg-BKT-CGS 0.2812 -0.2367 

AverageSlip 0.4279 0.0571 

Table II. RMSE and correlations between the ensemble models and the post-test. 

Ensemble Model RMSE Correlation 

Stepwise 0.1652 0.5151 

StepwiseWithAveraging 0.1773 0.5477 

RandomForest 0.1787 0.3960 

UniformAveraging 0.1806 0.5177 

LinearRegression 0.2009 0.2671 

LogisticRegression 0.2074 0.2645 

As discussed above, 5-fold cross-validation is used when evaluating the predictive power 

of the ensemble models, as data from the post-test is used in creating these models. By 

cross-validating we can have a greater confidence that the ensemble models generalize to 

new groups of students.  

The cross-validated RMSE and cross-validated correlations (between each of the 

ensemble models and the post-test) is summarized in table II. The stepwise ensemble 

model achieves the best RMSE among the ensemble models, achieving an RMSE of 

0.1652 and a correlation of 0.515. However, stepwise ensembling achieves a poorer 

RMSE than the individual model with the highest RMSE, AvgCFAR. The ensemble 

model with the best correlation was stepwise-with-averaging, which achieved an RMSE 

of 0.1773 and a correlation of 0.548. However, this was a lower correlation than the top 

three individual models for this metric, BKT-LessData, BKT-EM, and BKT-BF.  

6. CONCLUSIONS 
Within this paper, we have considered the effectiveness of ensemble methods to improve 

prediction of post-test scores for students using a Cognitive Tutor for Genetics. Nine 

algorithms for predicting latent student knowledge in the post-test were used. Unlike in 

previous research (e.g. Baker et al., in press), we conducted ensembling at the level of the 

post-test rather than at the level of performance within the tutor software. It was 

hypothesized that doing so would lead to superior prediction of the post-test, based on 

past successes of combined algorithms at predicting the post-test (e.g. Baker et al., 2010), 

but in fact, the best individual models predict the post-test better than any ensemble 
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method. Using Root Mean Squared Error (RMSE) as the goodness metric, the CFAR 

model achieves the best post-test prediction (0.1636), followed closely by stepwise 

ensembling (0.1652), the best ensemble method. Using correlation as the goodness 

metric, the BKT-LessData model achieves the best post-test prediction, with stepwise 

with averaging ensembling (the best ensemble method) tied for the third best correlation 

with post-test. 

Given the past success of ensembling methods in education (Pardos & Heffernan, in 

press) and other domains (Niculescu-Mizil et al., 2009), this lack of success is highly 

surprising. There are a few possible reasons for this. First of all, the data set used in this 

study was relatively small, with only 76 students. Ensembling methods can be expected 

to be more effective for larger data sets, as more complex models can only achieve 

optimal performance for large data sets. This is a general problem for analyses of post-

test prediction. While large data sets are increasingly available for educational data 

(Koedinger et al., 2010), it is rare to have post-tests tailored to specific tutor lessons 

administered to large numbers of students. That said, tutor data sets are increasingly 

aligned to standardized tests such as the MCAS (Feng, Heffernan & Koedinger, 2009). It 

is possible to distill post-test-equivalent measures of specific skills from these 

standardized tests, potentially making it possible to study ensembling of knowledge 

transferred outside the tutor software at a larger scale, where the benefits of ensembling 

may be more salient. That said, it is important to be able to improve student models with 

relatively limited amounts of data (by the time large amounts of data have been collected, 

many students will have used a version of the tutoring software which is not optimized). 

One potential option is to optimize a generally successful model (e.g. any of the more 

successful models in this study) as a first pass on model improvement, and then try 

ensemble selection on a larger data set, when that data set becomes available. 

Another reason why ensemble selection may have been less effective was high inter-

correlation between the models! predictions. The predictions made by the nine models 

were highly correlated (except for the average slip model and BKT-CGS model), with an 

average inter-correlation of 0.692 (excluding those two models), and the variants on BKT 

were even more correlated, with an average inter-correlation of 0.927 (excluding BKT-

CGS). This high degree of correlation reduces the potential gain from using models in 

tandem, and may suggest that ensembling may be more effective if methods for post-test 

prediction which leverage different information are used. 

Hence, the final conclusion of this paper is negative, but the possibility remains that 

alternate takes on ensemble selection may be found to be a valuable part of the repertoire 

of methods for modeling student knowledge in intelligent tutoring systems. 
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