
A Machine Learning Approach for Automatic Student Model
Discovery

Nan Li and Noboru Matsuda and William W. Cohen and Kenneth R. Koedinger, Carnegie Mellon
University

Student modeling is one of the key factors that affects automated tutoring systems in making instructional decisions. A student

model is a model to predict the probability of a student making errors on given problems. A good student model that matches

with student behavior patterns often provides useful information on learning task difficulty and transfer of learning between

related problems, and thus often yields better instruction. Manual construction of such models usually requires substantial

human effort, and may still miss distinctions in content and learning that have important instructional implications. In this paper,

we propose an approach that automatically discovers student models using a state-of-art machine learning agent, SimStudent.

We show that the discovered model is of higher quality than human-generated models, and demonstrate how the discovered

model can be used to improve a tutoring system’s instruction strategy.

1. INTRODUCTION

A student model is a set of knowledge components (KC) encoded in intelligent tutors to model how students
solve problems. The set of KCs includes the component skills, concepts, or percepts that a student must
acquire to be successful on the target tasks. For example, a KC in algebra can be how students should proceed
given problems of the form Nv=N (e.g. 3x = 6). It provides important information to automated tutoring
systems in making instructional decisions. Better student models match with real student behavior. They
are capable of predicting task difficulty and transfer of learning between related problems, and often yield
better instruction. Traditional ways to construct student models include structured interviews, think-aloud
protocols, rational analysis, and so on. However, these methods are often time-consuming, and require expert
input. More importantly, they are highly subjective. Previous studies [Koedinger and Nathan 2004; Koedinger
and McLaughlin 2010] have shown that human engineering of these models often ignores distinctions in
content and learning that have important instructional implications. Other methods such as Learning Factor
Analysis (LFA) [Cen et al. 2006] apply an automated search technique to discover student models. It has
been shown that these automated methods are able to find better student models than human-generated
ones. Nevertheless, one key limitation of LFA is that it carries out the search process only within the space
of human-provided factors. If a better model exists but requires unknown factors, LFA will not find it.

To address this issue, we propose a method that automatically discovers student models not depending on
human-provided factors. The system uses a state-of-art machine learning agent, SimStudent [Matsuda et al.
2009], to acquire skill knowledge. Each skill corresponds to a KC that students need to learn. The model then
labels each observation of a real student based on skill application. We evaluated the approach in algebra
using real student data. Experiment results show that the discovered model fits with real student data better
than human-generated models, and provides useful insights in finding better instructional methods.

In the following sections, we begin with a review of SimStudent. Next, we report experiment results that
demonstrate the benefits of the SimStudent model over the human-generated model. After this, we discuss
the possible improvements that can be made to a tutoring system suggested by the SimStudent model. In
closing, we discuss related work as well as future directions for this work.

Author’s address: Nan Li; email: nli1@cs.cmu.edu; Nobour Matsuda; email: Noboru.Matsuda@cs.cmu.edu; William W. Cohen;

email: wcohen@cs.cmu.edu; Kenneth R. Koedinger; email: koedinger@cmu.edu; 5000 Forbes Ave, Pittsburgh, PA 15232



2. A REVIEW OF SIMSTUDENT

SimStudent is an intelligent agent that inductively learns skills to solve problems from demonstrated solu-
tions and from problem solving experience. It is a realization of programming by demonstration [Lau and
Weld 1998] and employs inductive logic programming [Muggleton and de Raedt 1994] as one of its learning
mechanisms. For more details about SimStudent, please refer to Matsuda et al. [2009].

2.1 Input

SimStudent is given a set of feature predicate symbols and a set of operator symbols as prior knowledge before
learning. Each predicate is a boolean function that describes relations among objects in the domain (e.g. (has-
coefficient -3x)). Operators specify basic manipulations (e.g. (add 1 2), (coefficient -3x)) that SimStudent
can apply to objects in the problem solving interface, like numbers or character strings. Operators are
divided into two groups, domain-independent operators and domain-specific operators. Domain-independent
operators (e.g. (add 1 2)) are basic manipulations that are applicable across multiple domains. Real students
usually have knowledge of these simple skills prior to class. Domain-specific operators (e.g. (add-term 5x-
5 5), (coefficient -3x)), on the other hand, are more complicated manipulations that are associated with
only one domain. From a learner modeling perspective, beginning students may not know domain-specific
operators and thus providing such operators to SimStudent may produce learning behavior that is distinctly
different from human students [Matsuda et al. 2009]. Operators in SimStudent (whether domain-independent
or domain-specific) have no explicit encoding of preconditions and effects. This matches the intuition that
human students often “know how” without “knowing when”.
During the learning process, given the current state of the problem (e.g., -3x = 6), SimStudent first tries

to find an appropriate production rule (skill knowledge acquired by SimStudent) that proposes a plan for
the next step (e.g. (coefficient -3x ?coef) (divide ?coef)). If it finds one, it executes the plan, performs an
action in the system interface, and waits for feedback from the human user/author/tutor. If the user provides
positive feedback, SimStudent continues to the next step. If not, SimStudent records this negative feedback
and may try again. If SimStudent does not find a production rule that generates a correct action, it requests
a demonstration of the next step, which the user performs in the interface. SimStudent uses any negative
feedback to modify existing productions. It uses the next-step demonstration, if provided, to learn a new
production rule.

In the experiments we describe here, the user/author/tutor role is simulated by a hand-engineered algebra
tutor [Koedinger et al. 1995], which provides SimStudent with feedback and next-step demonstrations as
needed via an API. For each demonstrated step, the user/tutor specifies a tuple of 〈selection, action, input〉
(SAI tuple) for a skill. SimStudent is given a skill label (e.g. “divide”) generated by the cognitive tutor,
which corresponds to the type of skill applied. “Selection” in the SAI tuple (e.g. -3x and 6 for -3x = 6) is
associated with elements in the graphical user interfaces (GUI). It shows where a “focus of attention” is
—that is, where to look for relevant information. “Action” (e.g. entering some text) indicates what action
to take with the “input” (e.g. (divide -3) for problem -3x = 6). In this example, the full plan might be to
first retrieve coefficient and then to divide by it (e.g. (coefficient -3x ?coef) (divide ?coef)), but the tutor
only demonstrates the final action (e.g., (divide -3)) to SimStudent. Taken together, the given information
forms one record indexed by the skill label, R=〈label, 〈selection, action, input〉〉 (e.g. R=〈divide, 〈(-3x, 6),
input text, (divide -3)〉〉). In learning, SimStudent acquires one production rule for each skill label, based on
the set of associated records gathered at that point.

2.2 Production Rules

The output of the learning agent is represented as production rules. Each production rule corresponds to
one knowledge component. The left side of Figure 1 shows an example of a production rule learned by
SimStudent. A production rule indicates “when” (precondition) to apply a rule to what information found
“where” (focus of attention (FoA)) in the interface and “how” (operator sequence) the problem state should
be changed. For example, the rule shown in the left side of Figure 1 would be read as “given a left-hand side



•  Original: 

•  Skill divide (e.g. -3x = 6) 

•  FoAs: 

•  Left side (-3x) 

•  Right side (6) 

•  Precondition: 

•  Left side (-3x) does not 

have constant term 

•  Operator sequence: 

•  Get coefficient (-3) of left 

side (-3x) 

•  Divide both sides with the 

coefficient (-3) 

•  Extended: 

•  Skill divide (e.g. -3x = 6) 

•  FoAs: 

•  Left side (-3, -3x) 

•  Right side (6) 

•  Precondition: 

•  Left side (-3x) does not 

have constant term 

•  Operator sequence: 

•  Get coefficient (-3) of eft 

side (-3x) 

•  Divide both sides with the 

coefficient (-3) 

 does not 

erm 

 

3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) of left 

• Left side (-3

• Right ht sidsidsidsidsidsidsidsidsidsidsidsidsidsidsidsidsidsidsidsidside (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (6) 

• PrePrePrePrePrePrePrePrePrePrePrePrePrePrePrePrePrePrePreconconconconconconconconconconconconconconconconconconconconconditditditditditdition: 

• Left side (-3x)

have constan

• Operator sequen

Get coefficient

Fig. 1. Original and extended production rules for divide in a readable format.

(i.e. -3x) and a right-hand side (i.e. 6) of the equation, when the left-hand side does not have a constant
term, then get the coefficient of the term on the left-hand side and divide both sides by the coefficient.” The
focus of attention of the production represents paths through the task-specific GUI interface that retrieve
the items needed by the operator sequence. The precondition of a production rule includes a set of feature
tests, representing preconditions for applying the rule. The operator sequence specifies a plan to execute.

2.3 Learning Mechanism

SimStudent uses three different learning components for the three parts of the production rules. The first
component (the “where learner”) learns how to focus attention on the relevant aspects of the interface by
generalizing paths from the element for the interface as a whole to the specific elements of the interface that
have the information needed to execute the operator sequence. The elements in the GUI are organized in a
tree structure. In the algebra domain, the root node is a table node that links to columns, and each column
has multiple cells as children. The “where learner’s” task is to find the right paths in the tree to reach the
nodes in the focus-of-attention (e.g. Cell 11 and Cell 21). A FoA (e.g. Cell 21) can be reached either 1) by
the path to its exact position (e.g. Cell 21) in the tree, 2) by a generalized path (e.g. Cell 2?, Cell ??) to its
position. Therefore, given a set of FoAs from positive records, for each position, the “where learner” searches
for one least general path that covers all of the FoAs at that position.

The second part of the learning mechanism is a precondition learner (the “when learner”, which acquires
the precondition of the production rule using the given feature predicates. The precondition learner utilizes
FOIL [Quinlan 1990], an inductive logic programming system that learns Horn clauses from both positive
and negative examples expressed as relations. For each rule, the precondition learner creates a new predicate
that corresponds to the precondition of the rule, and sets it as the target relation for FOIL to learn. The
arguments of the new predicate are associated with the FoAs. Each training record serves as either a positive
or a negative example for FOIL. For example, (precondition-divide -3x 6) is a positive example for the new
predicate (precondition-divide ?FoA1 ?FoA2). The precondition learner also computes the truthfulness of all
predicates bound with all possible permutations of FoA values, and sends it as input to FOIL. Given these
inputs, FOIL will acquire a set of clauses formed by feature predicates describing the precondition predicate.

The last component is the operator sequence learner (the “how learner”). For each positive record, Ri,
the learner takes the FoAs, FoAsi, as the initial state, and sets the step, stepi, as the goal state. We say
an operator sequence explains a FoAs-step pair, 〈FoAsi, stepi〉, if the system takes FoAsi as an initial state
and yields stepi after applying the operators. For example, with the FoAs-step pair in the example, 〈(-3x,
6), (divide -3)〉, the operator sequence (coefficient -3x ?coef) (divide ?coef) is a possible explanation for this
pair. The learner searches for the shortest operator sequence that explains all of the 〈FoAs, step〉 pairs using
iterative-deepening depth-first search.



� �

�������	� 
����

��	��
����

���������

�������

� �

�������	�


����

�
�

���������

�������

Fig. 2. Correct and incorrect parse trees for −3x.

Last, although SimStudent tries to learn one rule for each label, it might fail to do so (e.g., when no
operator sequence can explain all records). In that case, SimStudent learns a disjunctive rule just for the last
record. This effectively splits the records into two clusters. Later, for each new record, SimStudent tries to
acquire a rule for each of the clusters with the new record, and stops whenever it successfully learns a rule
with one of the clusters, or creates another new cluster.

2.4 Extending SimStudent to Learn Deep Features

Previous study [Chi et al. 1981] has shown that one of the key differences between experts and novices is
that experts view the world in terms of deep features, whereas novices only see shallow features. Recently,
we have extended SimStudent to support acquisition of deep features using Li et al. [2010]’s algorithm.
They model deep feature learning as a grammar induction problem. In the algebra domain, expressions are
modeled with a probabilistic context free grammar (PCFG), and the deep features (e.g., “coefficient”) are
intermediate symbols in the grammar rules. Moreover, Li et al. [2010] showed that student errors can be
modeled as incorrect parsing, as shown at the right side of Figure 2. Li et al. [2010]’s deep feature learner
extends an earlier PCFG learner [Li et al. 2009] to support feature learning and transfer learning.
The input of the system is a set of observation-feature pairs such as 〈-3x, -3〉. The output is a PCFG with

a designated intermediate symbol in one of the rules set as the target feature. The learning process contains
two steps. The system first acquires the grammar using Li et al. [2009]’s algorithm. After that, the feature
learner tries to identify an intermediate symbol in one of the rules as the target feature. To do this, the system
builds parse trees for all of the observation sequences, and picks the intermediate symbol that corresponds
to the most training records as the deep feature. To model transfer learning, Li et al. [2010] further extend
the feature learner to acquire PCFGs based on previously acquired knowledge. When the learner is given a
new learning task, it first uses the known grammar to build parse trees for each new record in a bottom-up
fashion, and stops when there is no rule that could further merge two parse trees into a single tree. The
learner then switches to the original learner and acquires new grammar rules as needed. Having acquired
the grammar for deep features, when a new problem is given to the system, the learner will extract the deep
feature by first building the parse tree of the problem based on the acquired grammar, and then extracting
the subsequence associated with the feature symbol from the parse tree as the target feature. However, this
model is only capable of learning and extracting deep features without using them to solve problems.

As we have mentioned above, SimStudent is able to acquire production rules in solving complicated
problems, but requires a set of operators given as prior knowledge. Some of the operators are domain-
specific, and require expert knowledge to build them. On the other hand, the feature learner acquires the
deep features that are essential for effective learning, but is limited to information extraction tasks. In order
to both reduce the amount of prior knowledge engineering needed for SimStudent and to extend the deep
feature learner’s capability, we integrated the deep feature learner into SimStudent.
Extending Perceptual Learning. Previously, the FoAs encoded in production rules are always associ-

ated with paths to elements in the GUI (such as cells in the algebra example). Intuitively, the deep features
discussed above represent perceptual information–however, it is domain-specific, learned perceptual infor-



mation. To exploit this information, we extend the perceptual hierarchy for the GUI to further include the
most probable parse trees from the learned PCFG in the contents of the leaf nodes. We implement this by
appending the parse trees to their associated leaf nodes, marking the appended nodes as type “subcell”. In
the algebra example, this extension means that cells representing algebraic expressions (e.g., those corre-
sponding to left-hand sides or right-hand sides of the equation) are linked to parse trees for these expressions.
Using -3x as an example, the extended hierarchy includes the parse tree for -3x as shown on the left side of
Figure 2 as a subtree connected to the cell node associated with -3x. With this extension, the coefficient (-3)
of -3x is now explicitly represented in the percept hierarchy. Hence if the extended SimStudent includes this
subcell as a FoA in production rules, as shown at the right side of Figure 1, the production rule would no
longer need the domain-specific engineered operator “coefficient”.

However, extending the percept hierarchy presents challenges to the original “where learner”. First of all,
since the extended subcells are not associated with GUI elements, we can no longer depend on the tutor
to specify FoAs for SimStudent. Nor can we simply put all of the subcells in the parse trees as FoAs: if we
did, the acquired production rules would contain redundant information that might hurt the generalization
capability of the “where learner”. For example, for problem -3x=6, among all inserted subcells, only -3 is
a relevant FoA in solving the problem. Second, the paths to the relevant FoAs are typically more diverse:
for example, for problems -3x=6 and 4x=8, the original where learner would not be able to find one set of
generalized paths that explain both training examples, since -3x has eight nodes in its parse tree, while 4x
has only five. To address these challenges, we extend the original “where learner” to support acquisition of
FoAs with redundant and non-fixed length FoA lists.

To do this, SimStudent first includes all of the inserted subcells as candidate FoAs, and calls the operator
sequence learner to find a plan that explains all of the training examples. The “where learner” then removes
all of the subcells that are not used by the operator sequence from the candidate FoA list. Since all of the
training records share the same operator sequence, the number of FoAs remained for each record should
be the same. Next, the “where learner” arranges the remained subcell FoAs based on their orderings of
being used by the operator sequences. After this process, the “where learner” now has a set of FoA lists
that contains fixed number of FoAs ordered in the same fashion. We can then switch to the original “where
learner” to find the least general paths for the updated FoA lists. In our example for skill “divide”, as shown
at the right side of Figure 1, the FoAs of the production rule would contain three elements, the left-hand side
and right-hand side cells which are the same as the original rule, and a coefficient subcell which corresponds
to the left child of the variable term. Note that since we removed the redundant subcells, the acquired
production rule now works with both -3x=6 and 4x=8.

Extending Precondition Acquisition. In addition to extending the feature learner, we also extend the
vocabulary of feature symbols provided to the precondition learner. As implied by its name, the deep feature
learner acquires information that reveal essential features of the problem state. It is natural to think that
these deep features could also be used in describing desired situations to fire a production rule. Therefore, we
construct a set of grammar features that are associated with the acquired PCFG. The set of new predicates
describe positions of a subcell in the parse tree. For example, we create a new predicate called “is-left-child-
of”, which should be true for (is-left-child-of -3 -3x) based on the parse tree shown in the left side of Figure 2.
Importantly, these new predicates are not domain-specific (although they are specific to the PCFG-based
approach to deep feature learning). All of the grammar feature predicates are then included in the set of
existing feature predicates for the precondition learner to use later.

3. EXPERIMENT STUDY

3.1 Method

In order to evaluate the effectiveness of the proposed approach, we carried out a study using an algebra
dataset. We compared the SimStudent model with a human-generated KC model by first coding the real
student steps using the two models, and then testing how well the two model codings fit with real student
data.



For the human-generated model, the real student steps were first coded using the “action” label associated
with a correct step transaction, where an action corresponds to a mathematical operation(s) to transform
an equation into another. As a result, there were nine KCs defined (called the Action KC model) – add,
subtract, multiply, divide, distribute, clt (combine like terms), mt (simplify multiplication), and rf (reduce a
fraction). Four KCs associated with the basic arithmetic operations (i.e., add, subtract, multiply, and divide)
were then further split into two KCs for each, namely a skill to identify an appropriate basic operator and a
skill to actually execute the basic operator. The former is called a transformation skill whereas the latter is a
typein skill. As a consequence, there were 12 KCs defined (called the Action-Typein KC model). Not all steps
in the algebra dataset can be coded with these KC models – some steps are about a transformation that we
do not include in the Action KC model (e.g., simplify division). There were 9487 steps that can be coded
by both KC models mentioned above. The “default” KC model, which were defined by the productions
implemented for the cognitive tutor, has only 6809 steps that can be coded. To make a fair comparison
between the “default” and “Action- Typein” KC models, we took the intersection of those 9487 and 6809
steps. As a result, there were 6507 steps that can be coded by both the default and the Action-Typein KC
models. We then defined a new KC model, called the Balanced-Action-Typein KC model that has the same
set of KCs as the Action-Typein model but is only associated with these 6507 steps, and used this KC model
to compare with the SimStudent model.
To generate the SimStudent model, SimStudent was tutored on how to solve linear equations by interacting

with a Carnegie Learning Algebra I Tutor like a human student. We selected 40 problems that were used to
teach real students as the training set for SimStudent. Given all of the acquired production rules, for each
step a real student performed, we assigned the applicable production rule as the KC associated with that
step. In cases where there was no applicable production rule, we coded the step using the human-generated
KC model (Balanced-Action-Typein). Each time a student encounters a step using some KC is considered
as an “opportunity” for that student to show mastery of that KC.
Having finished coding real student steps with both models (the SimStudent model and the human-

generated model), we used the Additive Factor Model (AFM) [Cen et al. 2006] to validate the coded steps.
AFM is an instance of logistic regression that models student success using each student, each KC, and the
KC by opportunity interaction as independent variables,

ln
pij

1− pij
= θi +

∑

k

βkQkj +
∑

k

βkQkj(γkNik) (1)

Where:

i. represents a student i.

j. represents a step j.

k. represents a skill or KC k.

pij. is the probability that student i would be correct on step j.

θi. is the coefficient for proficiency of student i.

βk. is coefficient for difficulty of the skill or KC k

Qkj. is the Q-matrix cell for step j using skill k.

γk. is the coefficient for the learning rate of skill k;

Nik. is the number of practice opportunities student i has had on the skill k;

We utilized DataShop [Koedinger et al. 2010], a large repository that contains datasets from various
educational domains as well as a set of associated visualization and analysis tools, to facilitate the pro-
cess of evaluation, which includes generating learning curve visualization, AFM parameter estimation, and
evaluation statistics including AIC (Akaike Information Criterion) and cross validation.



� �

�������	� 
����

��	��
����

���������

�������

�

�������	�

���������

�������

Fig. 3. Different parse trees for -3x and -x.

3.2 Dataset

We analyzed data from 71 students who used an Carnegie Learning Algebra I Tutor unit on equation
solving. The students were typical students at a vocational-technical school in a rural/suburban area outside
of Pittsburgh, PA. The problems varied in complexity, for example, from simpler problems like 3x=6 to harder
problems like x/-5+7=2. A total of 19,683 transactions between the students and the Algebra Tutor were
recorded, where each transaction represents an attempt or inquiry made by the student, and the feedback
given by the tutor.

3.3 Measurements

To test whether the generated model fits with real student data, we used AIC and a 3-fold cross validation.
AIC measures the fit to student data while penalizing over-fitting. We did not use BIC (Bayesian Information
Criterion) as the fit metric, because based on past analysis across multiple DataShop datasets, it has been
shown that AIC is a better predictor of cross validation than BIC is. The cross validation was performed over
three folds with the constraint that each of the three training sets must have data points for each student
and KC. We also report the root mean-squared error (RMSE) averaged over three test sets.

3.4 Experiment Result and Implications on Instructional Decision

The SimStudent model contains 21 KCs. Both the AIC (6448) and the cross validation RMSE (0.3997)
are lower than the human-generated model (AIC 6529 and cross validation 0.4034). This indicates that the
SimStudent model better fits with real student data without over-fitting.

In order to understand whether the differences are significant or not, we carried out two significance
tests. The first significance test evaluates whether the SimStudent model is actually able to make better
predictions than the human-generated model. During the cross validation process, each student step was
used once as the test problem. We took the predicated error rates generated by the two KC models for
each step during testing. Then, we compared the KC models’ predictions with the real student error rate
(0 if the student was correct at the first attempt, and 1 otherwise). After removing ties, among all 6494
student steps, the SimStudent model made a better prediction than the human-generated KC model in
4260 steps. A sign test on this shows that the SimStudent model is significantly (p < 0.001) better in
predicting real student behavior than the human-generated model. In the second test, due to the random
nature of the folding process in cross validation, we evaluated whether the lower RMSE achieved by the
SimStudent model was consistent or by chance. To do this, we repeated the cross validation 20 times, and
calculated the RMSE for both models. Across the 20 runs, the SimStudent model consistently outperformed
the human-generated model. Thus, a paired t-test shows the SimStudent model is significantly (p < 0.001)
better than the human-generated model. Also note that differences between competitors in the KDD Cup
2010 (https://pslcdatashop.web.cmu.edu/KDDCup/Leaderboard) have also been in this range of thousands



−Nv=N Nv=−N Nv=N N=Nv −N=Nv −Nv=−N N=−Nv −v=N −v=−N −N=−v
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Problem Abstractions

E
rr

o
r 

R
a
te

 

 

Real Student

Human−generated Model

SimStudent Model

Fig. 4. Error rates for real students and predicted error rates from two student models.

in RMSE. Therefore, we conclude that the SimStudent model is a better student model than the human-
generated KC model.

We can inspect the data more closely to get a better qualitative understanding of why the SimStudent
model is better and what implications there might be for improved instruction. Among the 21 KCs learned
by the SimStudent model, there were 17 transformation KCs and four typein KCs. It is hard to map the
SimStudent KC model directly to the expert model. Approximately speaking, the distribute, clt, mt, rf KCs
as well as the four typein KCs are similar to the KCs defined in the expert model. The transformation skills
associated with the basic arithmetic operators (i.e. add, subtract, multiply and divide) are further split into
finer grain sizes based on different problem forms.

One example of such split is that SimStudent created two KCs for division. The first KC (simSt-divide)
corresponds to problems of the form Ax=B, where both A and B are signed numbers, whereas the second
KC (simSt-divide-1) is specifically associated with problems of the form -x=A, where A is a signed number.
This is caused by the different parse trees for Ax vs -x as shown in Figure 3. To solve Ax=B, SimStudent
simply needs to divide both sides with the signed number A. On the other hand, since -x does not have -1
represented explicitly in the parse tree, SimStudent needs to see -x as -1x, and then to extract -1 as the
coefficient. If SimStudent is a good model of human learning, we expect the same to be true for human
students. That is, real students should have greater difficulty in making the correct move on steps like -x =
6 than on steps like -3x = 6 because of the need to convert (perhaps just mentally) -x to -1x. To evaluate
this hypothesis, we computed the average error rates for a relevant set of problem types – these are shown
with the solid line in Figure 4 with the problem types defined in forms like -Nv=N, where the Ns are any
integrate number and the v is a variable (e.g., -3x=6 is an instance of -Nv=N and -6=-x is an instance of
-N=-v). We also calculated the mean of the predicted error rates for each problem type for both the human-
generated model and the SimStudent model. Consistent with the hypothesis, as shown in Figure 4, we see
that problems of the form Ax=B (average error rate 0.283) are much simpler than problems of the form
-x=A (average error rate 0.719). The human-generated model predicts all problem types with similar error
rates (average predicted error rate for Ax=B 0.302, average predicted error rate for -x=A 0.334), and thus
fails to capture the difficulty difference between the two problem types (Ax=B and -x=A). The SimStudent
model, on the other hand, fits with the real student error rates much better. It predicts higher error rates
(0.633 on average) for problems of the form -x=A than problems of the form Ax=B (0.291 on average).

SimStudent’s split of the original division KC into two KCs, simSt-divide and simSt-divide-1, suggests
that the tutor should teach real students to solve two types of division problems separately. In other words,
when tutoring students with division problems, we should include two subsets of problems, one subset
corresponding to simSt-divide problems (Ax=B), and one specifically for simSt-divide-1 problems (-x=A).
We should perhaps also include explicit instruction that highlights for students that -x is the same as -1x.



4. RELATED WORK

The objective of this paper is using a machine learning agent, SimStudent, to automatically construct student
models. There has been considerable work on comparing the quality of alternative cognitive models. LFA
automatically discovers student models, but is limited to the space of the human-provided factors. Other
works such as [Pavlik et al. 2009; Villano 1992] are less dependent on human labeling, but may suffer from
challenges in interpreting the results. In contrast, the SimStudent approach has the benefit that the acquired
production rules have a precise and usually straightforward interpretation. Baffes and Mooney [1996] applies
theory refinement to the problem of modeling incorrect student behavior. Other systems [Tatsuoka 1983;
Barnes 2005] use Q-matrix to find knowledge structure from student response data. None of the above
approaches use simulated students to construct cognitive models.

Other research on creating simulated students [Vanlehn et al. 1994; Chan and Chou 1997; Pentti Hietala
1998] also share some resemblance to our work. VanLehn [1990] created a learning system and evaluated
whether it was able to learn procedural “bugs” like real students. Biswas et al. [2005]’s system learns causal
relations from a conceptual map created by students. None of the above approaches compared the system
with learning curve data. To the best of our knowledge, our work is the first combination of the two whereby
we use cognitive model evaluation techniques to assess the quality of a simulated learner.

5. CONCLUSION AND FUTURE WORK

In this paper, we introduced an innovative application of a machine-learning agent, SimStudent, for an
automatic discovery of student models. An empirical study showed that a SimStudent generated student
model was a better predictor of real students learning performance than a human-coded student model. The
basic idea is to have SimStudent learn to solve the same problems that human students did and use the
productions that SimStudent generated as knowledge components to codify problem-solving steps. We then
used these KC coded steps to validate the models prediction. Unlike the human-engineered student model,
the SimStudent generated student model has a clear connection between the features of the domain contents
and knowledge components. An advantage of the SimStudent approach of student modeling over previous
techniques like LFA is that it does not depend heavily on the human-engineered features. SimStudent can
automatically discover a need to split a purported KC or skill into more than one skill. During SimStudents
learning, a failure of generalization for a particular KC results in learning disjunctive rules. Discovering such
disjuncts is equivalent to splitting a KC in LFA, however, whereas human needs to provide potential factors
to LFA as the basis for a possible split, SimStudent can learn such factors. The use of the perceptual learning
component, implemented using a probabilistic context-free grammar learner, is a key feature of SimStudent
for these purposes as we hypothesized that a major part of human expertise, even in academic domains like
algebra, is such perceptual learning.

Our evaluation demonstrated that representing the rules SimStudent learns in the student model improves
the accuracy of model prediction, and showed how the SimStudent model could provide important instruc-
tional implications. Much of human expertise is only tacitly known. For instance, we know the grammar of
our first language but do not know what we know. Similarly, most algebra experts have no explicit aware-
ness of subtle transformations they have acquired like the one above (seeing -x as -1x). Even though such
instructional designers may be experts in a domain they have thus have some blind spots regarding subtle
perceptual differences like this one, which may make a real difference for novice learners. A machine learning
agent, like SimStudent, can help get past such blind spots by revealing challenges in the learning process
that experts may not be aware of.

The current study used a single dataset in a single domain. The generality and validity of the proposed
student-modeling technique could be extended by training SimStudent with one dataset and applying a
discovered KC model to another dataset. For instance, the experiment dataset was from one high school.
An interesting future study would be to examine data from other schools or grade levels, and evaluate
the generality of the proposal technique. We should also apply this approach in other domains such as
stoichiometry, fraction addition and so on. The Pittsburgh of Science of Learning Centers DataShop contains



over 200 datasets in algebra and other domains that could be used for such cross-dataset or cross-domain
validation.

6. ACKNOWLEDGEMENTS

The research reported here was supported by National Science Foundation Award No. DRL-0910176 and the
Institute of Education Sciences, U.S. Department of Education, through Grant R305A090519 to Carnegie
Mellon University. The opinions expressed are those of the authors and do not represent views of the Institute
or the U.S. Department of Education. This work is also supported in part by the Pittsburgh Science of
Learning Center, which is funded by the National Science Foundation Award No. SBE-0836012.

REFERENCES

Baffes, P. T. and Mooney, R. J. 1996. A novel application of theory refinement to student modeling. In Proceedings of the

thirteenth national conference on Artificial intelligence. AAAI Press, 403–408.

Barnes, T. 2005. The Q-matrix method: Mining student response data for knowledge. In Proceedings AAAI Workshop

Educational Data Mining. Pittsburgh, PA, 1–8.

Biswas, G., Schwartz, D., Leelawong, K., and Vye, N. 2005. Learning by teaching: A new agent paradigm for educational

software. Applied Artificial Intelligence 19, 363–392.

Cen, H., Koedinger, K., and Junker, B. 2006. Learning factors analysis - a general method for cognitive model evaluation

and improvement. In Proceedings of the 8th International Conference on Intelligent Tutoring Systems. 164–175.

Chan, T.-W. and Chou, C.-Y. 1997. Exploring the design of computer supports for reciprocal tutoring. International Journal

of Artificial Intelligence in Education 8, 1–29.

Chi, M. T. H., Feltovich, P. J., and Glaser, R. 1981. Categorization and representation of physics problems by experts and

novices. Cognitive Science 5, 2, 121–152.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., and Mark, M. A. 1995. Intelligent Tutoring Goes to School in the Big

City. In Proceedings of the 7th International Conference on Artificial Intelligence in education.

Koedinger, K. R., Baker, R. S., Cunningham, K., Skogsholm, A., Leber, B., and Stamper, J. 2010. A data repository

for the EDM community: The PSLC DataShop.

Koedinger, K. R. and McLaughlin, E. A. 2010. Seeing language learning inside the math: Cognitive analysis yields transfer.

In Proceedings of the 32nd Annual Conference of the Cognitive Science Society. Austin, TX, 471–476.

Koedinger, K. R. and Nathan, M. J. 2004. The real story behind story problems: Effects of representations on quantitative

reasoning. The Journal of Learning Sciences 13, 2, 129–164.

Lau, T. and Weld, D. S. 1998. Programming by demonstration: An inductive learning formulation. In Proceedings of the

1999 International Conference on Intelligence User Interfaces. 145–152.

Li, N., Cohen, W. W., and Koedinger, K. R. 2010. A computational model of accelerated future learning through feature

recognition. In Proceedings of 10th International Conference on Intelligent Tutoring Systems. 368–370.

Li, N., Kambhampati, S., and Yoon, S. 2009. Learning probabilistic hierarchical task networks to capture user preferences.

In Proceedings of the 21st International Joint Conference on Artificial Intelligence. Pasadena, CA.

Matsuda, N., Lee, A., Cohen, W. W., and Koedinger, K. R. 2009. A computational model of how learner errors arise from

weak prior knowledge. In Proceedings of Conference of the Cognitive Science Society.

Muggleton, S. and de Raedt, L. 1994. Inductive logic programming: Theory and methods. Journal of Logic Programming 19,

629–679.

Pavlik, P. I., Cen, H., and Koedinger, K. R. 2009. Learning Factors Transfer Analysis: Using Learning Curve Analysis

to Automatically Generate Domain Models. In Proceedings of 2nd International Conference on Educational Data Mining.

121–130.

Pentti Hietala, T. N. 1998. The competence of learning companion agents. International Journal of Artificial Intelligence

in Education 9, 178–192.

Quinlan, J. R. 1990. Learning logical definitions from relations. Machine Learning 5, 3, 239–266.

Tatsuoka, K. K. 1983. Rule space: An approach for dealing with misconceptions based on item response theory. Journal of

Educational Measurement , 345–354.

VanLehn, K. 1990. Mind Bugs: The Origins of Procedural Misconceptions. MIT Press, Cambridge, MA, USA.

Vanlehn, K., Ohlsson, S., and Nason, R. 1994. Applications of simulated students: an exploration. Journal of Artificial

Intelligence in Education 5, 135–175.

Villano, M. 1992. Probabilistic student models: Bayesian belief networks and knowledge space theory. In Proceedings of the

2nd International Conference on Intelligent Tutoring Systems. Heidelberg, 491–498.


