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It has been previously proposed that understanding the mechanisms of contour perception can provide a theory for why some

flow-rendering methods allow for better judgments of advection pathways than others. In the present article, we develop this
theory through a numerical model of the primary visual cortex of the brain (Visual Area 1) where contour enhancement is

understood to occur according to most neurological theories. We apply a two-stage model of contour perception to various visual

representations of flow fields evaluated using the advection task of Laidlaw et al. [2001]. In the first stage, contour enhancement
is modeled based on Li’s cortical model [Li 1998]. In the second stage, a model of streamline tracing is proposed, designed to

support the advection task. We examine the predictive power of the model by comparing its performance to that of human

subjects on the advection task with four different visualizations. The results show the same overall pattern for humans and the
model. In both cases, the best performance was obtained with an aligned streamline-based method, which tied with a LIC-based

method. Using a regular or jittered grid of arrows produced worse results. The model yields insights into the relative strengths
of different flow visualization methods for the task of visualizing advection pathways.

1. INTRODUCTION

Many techniques for 2D flow visualization have been developed and applied. These include grids of little
arrows, still the most common for many applications, equally spaced streamlines [Turk and Banks 1996;
Jobard and Lefer 1997], and line integral convolution (LIC) [Cabral and Leedom 1993]. But which is best
and why? Laidlaw et al. [2001] showed that the “which is best” question can be answered by means of user
studies in which participants are asked to carry out tasks such as tracing advection pathways or finding
critical points in the flow field. (Note: An advection pathway is the same as a streamline in a steady flow
field.) Ware [2008] proposed that the “why” question may be answered through the application of recent
theories of the way contours in the environment are processed in the visual cortex of the brain. But Ware
only provided a descriptive sketch with minimal detail and no formal expression. In the present paper, we
show, through a numerical model of neural processing in the cortex, how the theory predicts which methods
will be best for an advection path tracing task.

1.1 The IBQ Approach in Image Quality Estimation

The IBQ approach combined with psychometric methods has proven suitable, especially for testing the
performance of imaging devices or their components and then returning this quality information to the
product development or evaluation stages. When the subjective changes in image quality are multivariate,
the technical parameters changing in the test image are unknown or difficult to compute. However, the
IBQ approach can be used to determine the subjectively important quality dimensions with a wide range of
natural image material related to changes caused by different devices or their components. In order to tune the
image-processing components for optimal performance, it is important to know what the subjectively crucial
characteristics that change in the perceived image quality are as a function of the tuning parameters, or simply
for different components. Table I describes the problems caused by multivariate changes in image quality
and offers suggestions of how to approach them by using different measurement methods that complement
each other. The IBQ approach can complement the psychometric approaches and objective measurements
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Table I. Multivariate Changes in Image Quality Attributes, the Relationship of Psychometric and
Objective Image Quality Estimations and the IBQ Approach

PROBLEM Estimating the performance when image quality changes are multivariate

APPROACH Objective measurements Subjective measurements

IBQ approach Psychometric approach

GOAL Objective and computa-

tional measures for de-
scribing the changes in the

images

Definition of subjectively

crucial image quality
characteristics

The amount of change in either the

overall quality or a single attribute

QUESTION What changes physically? What matters for the ob-

server?

How big is the perceived change?

The IBQ approach can help to determine the subjectively crucial characteristics of an image and therefore to give weights

to objective and computational measures.

by defining the subjective meaning of image quality attributes and characteristics; in other words, it reveals
how important they are for the overall perceived quality. This information can then be used as guidance in
tuning, and no complex models are needed in order to understand the relation between objective measures
and subjective quality ratings.

Our basic rational is as follows. Tracing an advection pathway for a particle dropped in a flow field is a
perceptual task that can be carried out with the aid of a visual representation of the flow. The task requires
that an individual attempts to trace a continuous contour from some designated starting point in the flow
until some terminating condition is realized. This terminating condition might be the edge of the flow field
or the crossing of some designated boundary. If we can produce a neurologically plausible model of contour
perception then this may be the basis of a rigorous theory of flow visualization efficiency.

Identify. Characteristics of an object.

Locate. Absolute or relative position.

Distinguish. Recognize as the same or different.

Categorize. Classify according to some property (e.g., color, position, or shape).

Cluster. Group same or related objects together.

Distribution. Describe the overall pattern.

Rank. Order objects of like types.

Compare. Evaluate different objects with each other.

Associate. Join in a relationship.

Correlate. A direct connection.

1.2 Conditions

The reproduction of the gestures was performed in the presence or absence of visual and auditory feedback,
resulting in four (2 × 2) conditions.

(1) Visual and auditory feedback (V + A).

(2) Visual feedback, no auditory feedback (V).

(3) Auditory feedback, no visual feedback (A).

(4) No visual or auditory feedback (None).

The order of the four conditions was randomized across participants.

—when + where ⇒ what : State the properties of an object or objects at a certain time, or set of times, and
a certain place, or set of places.



—when + what ⇒ where: State the location or set of locations.

—where + what ⇒ when: State the time or set of times.

When conducting a user study, the goal for the study is to measure the suitability of the visualization in
some sense. What is actually measured is a fundamental question that we believe can be handled by using
the concepts of effectiveness, efficiency, and satisfaction. These three concepts are derived from the ISO
standard of usability 9241-11.

Extent to which a product can be used by specified users to achieve specified goals with effective-
ness, efficiency, and satisfaction in a specified context of use.

The mechanisms of contour perception have been studied by psychologists for at least 80 years, starting
with the Gestalt psychologists. A major breakthrough occurred with the work of Hubel and Wiesel [1962;
1968] and from that time, neurological theories of contour perception developed. In this article, we show that
a model of neural processing in the visual cortex can be used to predict which flow representation methods
will be better. Our model has two stages. The first is a contour enhancement model. Contour enhancement
is achieved through lateral connections between nearby local edge detectors. This produces a neural map in
which continuous contours have an enhanced representation. The model or cortical processing we chose to
apply is adapted from Li [1998]. The second stage is a contour integration model. This represents a higher
level cognitive process whereby a pathway is traced.

Theorem 1.1. For a video sequence of n frames, an optimal approach based on dynamic programming
can retrieve all levels of key frames together with their temporal boundaries in O(n4) times.

We apply the model to a set of 2D flow visualization methods that were previously studied by Laidlaw
et al. [2001]. This allows us to carry out a qualitative comparison between the model and how humans
actually performed. We evaluated the model against human performance in an experiment in which humans
and the model performed the same task.

Our article is organized as follows. First we summarize what is known about the cortical processing of
contours and introduce Li’s [1998] model of the cortex. Next we show how a slightly modified version of Li’s
model differentially enhances various flow rendering methods. Following this, we develop a perceptual model
of advection tracing and show how it predicts different outcomes for an advection path-tracing task based
on the prior work of Laidlaw et al. [2001]. Finally we discuss how this work relates to other work that has
applied perceptual modeling to data visualization and suggest other uses of the general method.

2. CORTICAL PROCESSING OF CONTOURS

Visual information passes along the optic nerve from the retina of the eye where it is relayed, via a set of
synaptic junctions in the midbrain lateral geniculate nucleus, to the primary visual cortex at the back or
the brain (Visual Area 1 or V1). It has been known since the Hubel and Wiesel’s work in the 60s that the
visual cortex contains billions of neurons that are sensitive to oriented edges and contours in the light falling
on the retina. Such neurons have localized receptive fields each responding to the orientation information
contained within the light imaged in a small patch of retina. A widely used mathematical model of a V1
neuron’s receptive field is the Gabor function [Daugman 1985]:

Gabor(u, v, λ, θ, φ, σ, γ) = e−
u′2+γ2v′2

2σ2 cos(2π
u′

λ
+ φ). (1)

Hubel and Wiesel [1962; 1968] found that neurons responding to similar orientations were clustered to-
gether in a structure they called a column which extended from the surface of the visual cortex to the white
matter (see Figure 1). Later, they and other researchers discovered hypercolumn structures consisting of



Fig. 1. Neurons are arranged in V1 in a column architecture. Neurons in a particular column respond preferentially to the

same edge orientation. Moving across the cortex (by a minute amount) yields columns responding to edges having different
orientations. A hypercolumn is a section of cortex that represents a complete set of orientations for a particular location in

space.

Fig. 2. Neurons whose receptive fields are aligned along a continuous contour mutually reinforce each other. They inhibit

nearby neurons with a similar orientation sensitivity.

thousands of neurons all responding to the same area of visual space and selecting for a range of orienta-
tions. Overall, V1 contains a topographic map of the visual field having the property that every part of the
retinal image is processed in parallel for all orientations. These orientation selective neurons have provided
the basis for all subsequent theories of contour and edge detection.

There remains the problem of how the output of orientation sensitive neurons, each responding to different
parts of a visual contour, becomes combined to represent the whole contour. Part of the solution appears
to be a contour enhancement mechanism. Field et al. [1993] examined the human’s ability to perceive
a contour composed of discrete oriented elements. They placed a contour composed of separated Gabor
patches, among a field of randomly orientated Gabor patches. Contours were detected when the patches
were smoothly aligned. They were not detected when there was misalignment. This work suggests that there
is some manner of lateral coupling among the visual elements involved in perceiving the Gabor patches in
the contour. These researchers have suggested that similarly oriented aligned contours mutually excite one
another, while they inhibit other neurons that are nearby (Figure 2).



3. LI’S V1 MODEL

Based on the observed organization of the neurons in the visual cortex by Hubel and Wiesel [1962; 1968]
and the experimental evidence by Field et al. [1993], Zhaoping Li constructed a simplified model of the
behavior of V1 neurons and examined the model’s ability to integrate contours across multiple V1 neurons.
The model is introduced briefly here, and described in more detail in Li [1998]. In Li’s model, the cortex is
approximated by a set of hypercolumns arranged in a hexagonal grid. Each hexagonal cell has 12 orientation-
selective neuron pairs oriented in 15-degree increments. One of the main simplifications embodied in Li’s
model is that it fails to incorporate the way the mammalian visual systems scales with respect to the fovea.
Real neural architectures have much smaller receptive fields near the fovea at the center of vision than at
the edges of the visual field. The neurons in each hex cell were grouped into excitatory and inhibitory pairs
responding to an edge of a particular orientation at that location. Thus there were a total of 24 neurons
per cell. The firing rates of both the inhibitory and excitatory neurons were modeled with real values. The
neuron pairs affected neighboring neuron pairs via a transfer function that depended on the alignment of
the edge selectivity orientations. Neuron pairs that were aligned with one another exhibited an excitatory
effect on each other, while pairs that were not aligned inhibited each other. Finally, Li’s model also contains
feedback pathways for higher-level visual areas to influence individual neurons.

In our implementation, the mapping of the hexagonal grid to the image space was such that the hex
centers were separated by 10 pixels. For the V1 neuron response, we used the Gabor function (Eq. (1)) with
a wavelength, λ, of 21 pixels, a σ of 7 pixels, and an aspect ratio, γ, of 1.

4. STREAMLINE TRACING ALGORITHM

Laidlaw et al. [2001] compared the effectiveness of visualization techniques by presenting test subjects with
the task of estimating where a particle placed in the center of a flow field would exit a circle. Six different flow-
field visualization methods were assessed by comparing the difference between the actual exit numerically
calculated and the estimation of the exit by the human subjects. Laidlaw et al.’s experiment was carried out
on humans but, in our work, we apply this evaluation technique to humans as well as to our model of the
human visual system and use a streamline tracing algorithm to trace the path of the particle.

We use the term streamline tracing to describe the higher level process that must exist for people to judge
a streamline pathway. We call it streamline tracing because the task seems to require the user to make a
series of judgments, starting at the center, whereby the path of a particle dropped in the center is integrated
in a stepwise pattern to the edge of the field. Though many algorithms exist in the machine vision literature
for contour tracing, we found these to be inappropriate for use in this application. Contour tracing algorithms
are generally designed to trace out the boundary of some shape but a streamline tracing algorithm must also
be able able to produce a streamline in a field of disconnected contours, such as is the case with the regular
arrows. The streamline to be traced will often not follow a visible contour but instead be locate between
contours, and will sometimes pass through areas devoid of visual elements. Thus we developed a specialized
algorithm that is capable of tracing streamlines that do not necessarily correspond to the boundary of any
shape but can pass between visual contours.

Perception is a combination of top-down and bottom-up processes. Bottom-up processes are driven by
information on the retina and are what is simulated by Li’s model [1998]. Top-down processes are much
more varied and are driven in the brain by activation from regions in the frontal and temporal cortex that
are known to be involved in the control of pattern identification and attention [Lund 2001]. All of the flow
visualizations evaluated by Laidlaw et al. [2001], except for LIC, contain symbolic information regarding the
direction of flow along the contour elements (e.g. an arrowhead). In a perpetual/cognitive process this would
be regarded as a top-down influence. At present our model does not deal with symbolic direction information
but it does do streamline tracing once set in the right general direction.



Streamline tracing is a combination of top-down and bottom-up processes. Broadly speaking, top-down
processes reflect task demands and the bottom-up processes reflect environmental information. In our case,
the bottom-up information comes from the different types of visualization, while the top-down information is
an attempt to model the cognitive process of streamline pathway tracing. Contour integration was modeled
using the following iterative algorithm.

ALGORITHM 1: Iterative Algorithm

current position← center
current direction← up
current position is inside circle
while current position is inside circle, do

neighborhood← all grid hexes within two hexes from current position
for each hex in neighborhood, do

for each neuron in hex do
convert neuron orientation to vector
scale vector by neuron excitation
vector sum← vector sum+ vector

end
end
normalize vector sum
current position← current position+ vector sum
current direction← vector sum
return current position

end

The algorithm maintains a context that contains a current position and direction. Initially, the position
is the center, and the direction set to upward. This context models the higher-order, top-down influence on
the algorithm that results from the task requirements (tracing from the center dot) and the directionality
which in our experiment was set to be always in an upwardly trending direction.

The algorithm traces the contour by repeatedly estimating the flow direction at the current position and
moving the position a small distance (.5 hex radii) in that direction. The flow direction is calculated from the
neural responses in the local neighborhood of the current position. The excitation of each neuron is used
to generate a vector whose length is proportional to the strength of the response and whose orientation is
given by the receptive field orientation. Because receptive field orientations are ambiguous as to direction (for
any vector aligned with the receptive field, its negative is similarly aligned). The algorithm chose the vector
most closely corresponding to the vector computed on the previous iteration. Vectors are computed for all
neurons in hypercolumns within a 2-hexes radius of the current position; they are summed and normalized
to generate the next current direction.

Some changes were made from the method published by Pineo and Ware [2008]. Previously, the algorithm
considered only a single hex cell at each iteration of the algorithm. We found that this would occasionally
cause unrealistically large errors in streamline tracing. For example, on visualizations with arrowheads,
the neural network might yield a very strong edge orthogonal to the flow field positioned at the back of
an arrowhead. If the algorithm considered only the edges at this point, it may make a significant error,
despite the edges in nearby positions indicating the correct direction. We felt that creating an average over
neighborhood was the more correct approach, and we found closer agreement with human performance with
this change.

4.1 Qualitative Evaluation

Four different flow visualization methods were used in our evaluation of the theory. These were implemen-
tations of four of the six used by Laidlaw et al. [2001]. We chose to investigate a regular arrow grid because



Fig. 3. Regular arrows. Fig. 4. Jittered arrows.

Fig. 5. Closeup of neural response to arrowheads. Fig. 6. Closeup of neural response to aligned streaklets.

it is still the most commonly used in practice and a jittered arrow grid because of the arguments that have
been made that this should improve perceptual aliasing problems [Turk and Banks 1996]. We added Line
Integral Convolution (LIC) because of its widespread advocation by the visualization community [Cabral
and Leedom 1993] and head-to-tail aligned streaklets because of Laidlaw et al.’s finding that is was the best
and the theoretical arguments in support of this method [Ware 2008]. Note that Laidlaw et al. used Turk and
Banks algorithm to achieve aligned arrows on equally spaced streamlines while we used Jobard and Lefer’s
[1997] method to achieve the same effect and we used streaklets without an arrowhead [Fowler and Ware
1989].

V1 is known to have detectors at different scales. However, to make the problem computationally tractable
we chose only a single scale for the V1 and designed the data visualizations with elements scaled such that
they were effectively detected by the gabor filter used by the model. The widths of the arrows and streaklets
were chosen to be smaller than the central excitatory band of the gabor filter. This allowed the edge to be
detected even if not precisely centered on the receptive field of the neuron. The spatial frequency of the LIC
visualization is defined by the texture over which the vector field is convoluted. Our texture was created by
generating a texture of random white noise of one-third the necessary size and scaling it up via. interpolation.
The resulting spacial frequency of the LIC visualization was of a scale that was effectively detected by the
gabor filters of the model.

4.1.1 Regular Arrows (Figure 3). This visualization is produced by placing arrow glyphs at regular spac-
ings. The magnitude of the vector field is indicated by the arrow length, and the flow direction by the arrow



head. The grid underlying the regular arrows is apparent to humans, but the edge weights of the model show
no obvious signs of being negatively affected. In fact, the regularity ensures that the arrows are well spaced,
preventing any false edge responses that might be produced by the interference of multiple arrows. We can
expect that nontangential edge responses will be produced by the arrowheads and these will lead to errors
in the streamline advection task.

4.1.1.1 Jittered arrows (Figure 4). This visualization is similar to the regular arrows, but the arrows are
moved a small random distance from the regular locations. While composed of the same basic elements as
the regular grid, we see instances where nearby arrows interfere with each other and produce edge responses
nontangential to the flow direction. Also, as with gridded arrows, the arrowheads will excite neurons with
orientation selectivity nontangential to the flow. This can be seen in Figure 5. In this figure, we can see
orthogonal neural excitation to each side of the upper arrow, caused by the back edge of the arrowhead (blue
circles). We can also see excitation caused by the interference of two arrows at the bottom right (green circle).
These nontangential responses are much stronger than those found in the aligned streaklets visualization
(Figure 6).

5. DISCUSSION

The overall agreement between the pattern of results for human observers and the V1-based model provides
strong support of the perceptual theory we outlined in the introduction. The aligned arrows style of visu-
alization produced clear chains of mutually reinforcing neurons along the flow path in the representation,
making the flow pathway easy to trace as predicted by theory.

The fact that LIC produced results as good as the equally spaced streamlines was something of a surprise,
and this lends support to its popularity within the visualization community. While it did not produce as
much neuron excitation as the aligned arrows method, this was offset by the lack of nontangential edge
responses produced by glyph-based visualizations. However, its good performance was achieved only because
our evaluation method ignored the directional ambiguity inherent in this method. Laidlaw et al. [2001] found
this method to be the worst and there is little doubt that had we allowed flow in any direction, up or down,
human observers would have found pathways with close to 180 degrees of error half of the time.

The performance of both the model and the human test subjects is likely to be highly dependent on the
underlying vector field used. As described in Section 5.1.6, the vector field was generated by interpolating
between an 8x8 grid of random, but generally upward pointing vectors. A consequence of this is that when
adjacent vectors in this grid point somewhat toward each other, the vector field forms an area of convergence.
This convergence area tends to funnel neighboring streamline paths together, reducing error in streamline
tracing (Figure 3 is an example of this). Thus, the overall accuracies of both the model and human subjects
may be higher than might be might be observed using a vector field without such convergence zones.

We were surprised that the computer algorithm actually did better at the task than human observers.
One reason for this may have been that humans would have to make saccadic eye movements to trace a
path, whereas the computer did not. For the patterns we used, it is likely that the observers had to make
fixations on several successive parts of a path, and errors may have accumulated as they resumed a trace
from a previous fixation. Nevertheless, we feel that the algorithm could easily be adjusted to make it give
results closer to human subjects. A more sophisticated approach would be to simulate eye fixations.

The model we applied is a considerable simplification over what actually occurs. It only uses the simplest
model of the simplest orientation sensitive neurons, and fails to include cortical magnification, among other
shortcomings. Real cortical receptive fields are not arranged in a rigid hexagonal grid as they are in Li’s model.
Furthermore, the neurons of V1 respond to many frequencies, however our model only uses one in its present
form. In addition, besides the so-called simple cells modeled by Li [1998], other neurons in V1 and V2 called
complex and hypercomplex cells all have important functions. For example, end-stopped cell respond best to



a contour that terminates in the receptive field and understanding these may be important in showing how
the direction of flow along a contour can be unambiguously shown. Moreover, visual information is processed
through several stages following the primary cortex, including V2, V4 and the IT cortex. Each of these appears
to abstract more complex, less localized patterns. Researchers are far from having sufficient information to
model the operations of these stages all of which may have a role in tracing contours. Nevertheless, the
results are compelling and there are advantages in having a relatively simple model. We have plans to add
some of these more complex functions in future versions of the model.
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