
 

 

 

Using multiple Dirichlet distributions to improve 
parameter plausibility 

Yue Gong, Joseph E. Beck and Neil T. Heffernan 

{ygong, josephbeck, nth}@wpi.edu 
Computer Science Department, Worcester Polytechnic Institute 

Abstract.  Predictive accuracy and parameter plausibility are two major desired 
aspects for a student modeling approach. Knowledge tracing, the most 
commonly used approach, suffers from local maxima and multiple global 
maxima. Prior work has shown that using Dirichlet priors improves model 
parameter plausibility. However, the assumption that all knowledge components 
are from a single Dirichlet distribution is questionable. To address this problem, 
this paper presents an approach to integrate multiple distributions and Dirichlet 
priors. We show that modeling groups of students separately based on their 
distributional similarities produces model parameters that provide a more 
plausible picture of student knowledge, even though the proposed solution did 
not improve the model’s predictive accuracy. We also show Dirichlet priors 
might be hurt by outliers and models with trimming work better.  

1 Introduction 

In educational research, one fundamental goal is assessing students and estimating 
constructs, such as their knowledge levels, behaviors, goals and mental states, etc.  Since 
most of those attributes are difficult to directly measure, the technique of student 
modeling has been widely used for estimating latent characteristics. A common 
evaluation of student modeling focuses on how well the model fits the training data and 
how well the model can generalize to unseen test data.  However, there has been 
increasing research focusing on utilizing the model parameters to answer scientific 
questions [e.g., 1]. Since we are interpreting the model’s parameters, we need some 
means of validating the model’s parameters, not just its predictions. We call this property 
parameter plausibility. In this paper, we extended our prior work [2], investigating new 
approaches for improving the student model in terms of predictive accuracy and 
parameter plausibility. First, we provide some background into our student modeling 
framework, knowledge tracing, and its problems. We also illustrate the weaker points in 
our prior work and present a method that overcomes that limitation.   

1.1 Knowledge tracing model 
Corbett and Anderson style knowledge tracing (KT) [3] has been successfully used in 
many tutoring systems to estimate a student’s knowledge of a skill.  It is based on a 2-
state hidden Markov model where the student performance is observable, whereas his 
knowledge is latent. There are two parameters slip and guess, which mediate student 
knowledge and student performance. These two parameters are called the performance 
parameters in the model. The guess parameter represents the fact that the student may 
sometimes generate a correct response in spite of not knowing the correct skill. The slip 
parameter acknowledges that even students who understand a skill can make an 
occasional careless mistake.  
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In addition to the two performance parameters, there are two learning parameters. The 
first is prior knowledge (K0), the likelihood the student knows the skill when he first uses 
the tutor. The second learning parameter is learning, the probability a student will acquire 
a skill as a result of an opportunity to practice it. Every skill to be tracked has these four 
parameters, slip, guess, K0, and learning, associated with it. 

1.2 The problem and proposed solution  
How to estimate the model parameters is an important issue. There are a variety of model 
fitting approaches. The Expectation Maximization (EM) algorithm is one of the most 
commonly used methods. It finds parameters that maximize the data likelihood (i.e. the 
probability of observing the student performance data). Compared to other model fitting 
approaches for KT, using EM to learn the parameters has been found to achieve the 
highest predictive accuracy [4].  However, it still suffers two major problems that are 
inherent in the KT model’s search space: local maxima and multiple global maxima [2,5].  

Local maxima are common in many error surfaces. The issue is that the algorithm has to 
start with some initial value of each parameter, and its final parameter estimates are 
sensitive to those initial values. The second difficulty, multiple global maxima, is known 
as identifiability and means that for the same model, given the same data, there are 
multiple (differing) sets of parameter values that fit the data equally well. Based on 
statistical methods, there is no way to differentiate which set of parameters is preferable 
to the others. Consequently, we have to be more careful to select the parameters’ initial 
values when using EM to fit the model, as we want to neither be stuck with some local 
maxima, nor get unbelievable parameters which are meaningless for making scientific 
claims, even if those parameters make accurate predictions.   

In order to solve the problems, in the previous work [2], we proposed that, rather than 
using a single fixed value to initialize the conditional probability table when training a 
knowledge tracing model, it is possible to use Dirichlet priors to start the algorithm. 
Briefly speaking, we assumed each parameter’s values are drawn from Dirichlet 
distribution, which is specified by a pair of numbers (α, β).  The two numbers specify not 
only the most likely value for a parameter, but also the confidence in the estimate. The 
Dirichlet priors, which usually represent the researchers’ prior beliefs, provide a 
reasonable starting point and bias the model-fitting process, thus decreasing the 
probability of ending with an implausible value.  

Modeling all skills using the same set of Dirichlet priors assumes that all knowledge 
components are drawn from a single Dirichlet distribution. That is to say, knowledge 
components are assumed to have distributional similarities with each other in terms of all 
four attributes, prior knowledge, guess, slip and learning. Therefore, Dirichlet priors 
provide bias to all skills towards the mean of the distribution, especially to those 
abnormal outlier skills. In general, outliers could arise due to lack of sufficient 
observations. Specifically, with sparse data, the model is trained with few constraints 
from the evidence; thus although it achieves the highest predictive accuracy it could get, 
still generates implausible parameter estimates. In this situation, we argue that it is 

62



 

 

 

preferable to have parameters which are more similar to the other, better-estimated, skills. 
As shown in Figure 1, Skill A and Skill B are at the tail of the distribution.  By using 
Dirichlets, those outliers are biased towards the mean of the distribution. The hypothesis 
is that it is probably good that they are moved towards the center.  

                 

Figure 1 Dirichlet distribution with two outliers             Figure 2  Dirichlet with more “outliers”                                               

1.3 The problem with a single Dirichlet distribution 
Dirichlets has been shown to work well on positively biasing outliers [2,5]. However, a 
key question was overlooked:  are the outliers really outliers?  

Since the assumption of using Dirichlets is that skills in the domain are from a single 
distribution, those skills which are located further away from the mean are considered 
outliers. However, is it really true that all skills are from the same distribution? As shown 
in Figure 2, which has the same distribution as the one in Figure 1, if there are additional 
skills, with similar parameter estimates to Skills A and B, perhaps they are not really 
outliers. A plausible hypothesis is that they are from a cluster of skills which behave 
differently, i.e. they were not drawn from the same Dirichlet distribution as the other 
skills. If so, then moving them towards the mean may be inappropriate as they are better 
modeled as a separate distribution.    

2 Methodology 

2.1 Clustering 
We used clustering to discover which skills should be modeled separately with their own 
distribution. In the current context, a skill cluster is considered a region in the knowledge 
tracing parameter space where the skills share similar patterns with respect to the four 
knowledge tracing parameters. For example, possibly a group of skills might be described 
as “not previously known (low K0), but easy to learn (high learning)”, or “hard to learn, 
but students have partial incoming knowledge”.  The intuition is that the skills within a 
group are spatially located close to each other in the parameter space.  

We used K-means clustering to identify the skill clusters. We did not  use any self-
adaptive clustering variants to automatically determine the number of clusters. The 
reason for this is that it is hard to evaluate the appropriate number of clusters, as our goal 
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is to find the clusters that will result in good predictive accuracy and parameter 
plausibility when modeled as Dirichlets.  We had no a priori reason to believe that an 
automated clustering approach would optimize our metrics.  Therefore, we used iteration 
until the number of clusters that works best on an unseen test set was found (i.e. we 
observed overfitting beginning to occur). 

2.2 Trimming the data to improve Dirichlet parameter estimation 
There are several approaches to setting Dirichlet prior values. One approach is using 
knowledge of the domain [e.g. 5]. If someone knows how quickly students tend to master 
a skill or the likelihood of knowing a skill, that knowledge can be used to set the priors. 
One problem with this approach is that it is not necessarily replicable, as different 
domains, subjects, and experts may give different answers. Therefore, following the 
methods in [2], we automatically derived the Dirichlet priors from the data.  

It is important to note, however, that automatically calculated Dirichlets are susceptible to 
undue influence from outliers.  Similar to calculating the arithmetic mean, outliers can 
distort the parameter estimates. In order to address this problem, we trimmed outliers 
from the data using two different approaches.  

The first approach was value-oriented, in which we processed the four knowledge tracing 
parameters separately and trimmed out the largest and smallest 5% of the values. For 
example, the 0.001 learning rate of the Pythagorean Theorem skill was in the lowest 5% 
and thus removed, while the more believable 0.45 prior knowledge estimate was not. The 
second approach was skill-oriented, in which we calculated the relative distance between 
a skill’s parameters and its cluster’s centroid. Those skills furthest away from the centroid 
were considered outliers, 10% of which we trimmed from the data used to calculate the 
Dirichlet priors.  

2.3 Training with multiple Dirichlet distributions 
To compare the parameter plausibility and predictive accuracy of the fixed, single-
Dirichlet prior and the multiple Dirichlet prior models, we trained a KT model on each of 
them using the following approach: 

 
 
 
 
 
 
 
 
 
 
 
 
We trained a knowledge tracing model for each skill using the same set of fixed priors for 
EM initialization. After finding each skill’s parameter set (prior knowledge, guess, slip, 

TrainWithMultiDrichlets (model, data) 
1    [prior knowledge, guess, slip, learning] := EM (model, data, fixed prior[]); 
2    for k :=1 to n 
3 if (k !=1)  clusters[] := K-means ([prior knowledge, guess, slip, learning], k); 
4 else cluster[1] := [prior knowledge, guess, slip, learning]; 
5 for i := 1 to k 
6        for each dimension d from [prior knowledge, guess, slip, learning] k,i 
7              Dirichlet priors[] (α, β) := CalculateDirichlets(d); 
8           [prior knowledge, guess, slip, learning]’ k,i := EM (model, data in cluster k,i, Dirichlet priors[]); 

64



 

 

 

learning), we calculated the priors for a single Dirichlet distribution and reestimated the 
KT model. For multiple Dirichlet distributions, we classified the parameter sets into k 
clusters. For each cluster, we calculated its own Dirichlet priors, and then used those to 
initialize the EM algorithm and reestimated the models. We didn’t specify an upper 
bound on the number of clusters (i.e. the value of n), as the number of clusters should 
depend on the improvement of predictive accuracy and parameter plausibility rather than 
the statistical properties of the clusters.  

2.4 Data 
For this study, we used data from ASSISTment, a web-based math tutoring system. The 
data are from 345 twelve- through fourteen- year old 8th grade students in urban school 
districts of the Northeast United States.  They were from four classes, each of which only 
lasted one month. These data consisted of 92,180 log records of ASSISTment during 
Dec. 2008 to Apr. 2009. Performance records of each student were logged across time 
slices for 105 skills (e.g. area of polygons, Venn diagram, division, etc). We took 20% of 
the students as the unseen test subjects. Their performance records are our test data. 

3 Results 

We used BNT-SM [7] to apply the EM algorithm to estimate the KT model’s parameters. 
Following the above procedure in Section 2.3, we trained several models to fit the test 
dataset. We compared the models focusing on the model’s predictive accuracy and 
parameter plausibility. 

3.1 Predictive Accuracy 
We measured the models’ predictive accuracy on the unseen test data set using two 
metrics: AUC (Area Under ROC Curve) and R2. 

In Table 1, for the three models with Dirichlets, the Dirichlet priors are calculated based 
on the trimmed data (since that gave slightly better results). We see the AUC values don’t 
show any difference among the first four models. The values remain unchanged even we 
considered the possibility that skills come from multiple distributions (shown in the third 
and fourth rows). R2 also didn’t show any meaningful differences.  

Since Ritter et al. have found that predictive accuracy when using the cluster centers is 
not much worse than when each individual skill’s parameters are used, we decided to see 
if that result will replicate on our data set.  Therefore, we evaluated the models using the 
cluster centers to predict the test data. The results in the last two rows of Table 1 showed 
that AUC values are similar to their counterparts, but R2 values are lower (0.053 vs. 
0.071 and 0.056 vs. 0.072), suggesting that compared to the predictions done by the 
models with parameters estimated for each skill, using generic cluster information to fit 
the data achieves less accurate, but possibly still acceptable, predictions. 

These results show that predictive accuracy is not improved by using Dirichlets even with 
multiple distributions. Related to the prior work [4] where we evaluated the predictive 
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accuracy of the knowledge tracing model using a variety of model fitting approaches, and 
also the Performance Factor Analysis model [8], it seems that improving the model’s 
predictive accuracy on the unseen students is a very difficult task.    

Table 1. Comparison of AUC and R2 
AUC  R2 

Fixed  0.66  0.072 
Single Dirichlet   0.66  0.071 
2 Dirichlet distributions  0.66  0.071 
3 Dirichlet distributions   0.66  0.072 
2 distributions  (cluster center)  0.64  0.053 
3 distributions  (cluster center)  0.65  0.056 

3.2 Parameter plausibility 
In addition to using models for prediction, educational researchers also expect model 
parameters to be able to provide meaningful interpretations. Therefore, parameter 
plausibility is another important aspect for evaluating models. However, quantifying 
parameter plausibility or goodness is non-trivial due to the lack of gold standards. In our 
study, we used the two metrics we explored in [2].  

For the first metric, we inspected the number of practice opportunities required to master 
each skill in the domain. We assume that skills in the curriculum are designed to neither 
be so easy to be mastered in three or fewer opportunities nor too hard as to take more 
than 50 opportunities. We define mastery as the same way as was done for the mastery 
learning criterion in the LISP tutor [9]: students have mastered a skill if their estimated 
knowledge is greater than 0.95. Based on students’ prior knowledge and learning 
parameters, we calculated the number of practice opportunities required until the 
predicted knowledge exceeds 0.95. Then, we compared the number of skills with 
unreliable values in both cases (fewer than 3 and more than 50). 

As seen in Table 2, the results might not be consistent in the two conditions. Fixed priors 
results in more skills with too fast mastery rate, whereas the other three models produce 
5-6 more skills mastered too quickly. It is worth pointing out that the skills found to be 
slowly mastered by the fixed model is a subset of those found by the other three models. 
Furthermore, the skills with low mastery rates found by the three Dirichlet models have 
high overlap.  

One possibility is the skills really are learnt that slowly. For example, if the students 
lacked preparation, they are unlikely to learn just through an ITS.  All of the skills that 
required more than 50 opportunities to master were from the same distribution in the 2-
distribution model.  That distribution with “unlearnable” skills has the parameter 
estimates of 0.5, 0.36, 0.22 and 0.08 for prior knowledge, guess, slip and learning, 
respectively. Compared to the learning rate of the other distribution, 0.36, the skills are 
captured as ones that students have difficulties to learn, thus the mastery rates are very 
slow. Interestingly, in the 3-distribution model, the “unlearneable” skills are from two 
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distributions. One has higher prior knowledge, 0.62, but lower learning rates, 0.07. The 
other has lower prior knowledge, 0.39, but normal learning rate, 0.11. We know that both 
cases could result in a slow mastery progress. Therefore, although the numbers seems to 
suggest those skills are poorly-estimated, if there really are skills students don't learn, the 
models are better at finding them due to clustering.  

Table 2. Comparison of extreme number of practice until mastery 
  # of skills with # of 

practices >=50 
# of skills with # of 
practices <=3 

Fixed   22  2 
Single Dirichlet  28  0 
2 Dirichlet distributions  27  0 
3 Dirichlet distributions   27  0 

 
We also tried to evaluate parameter values directly by calculating the correlation between 
a skill’s estimated prior knowledge and the grade at which that skill was taught. We 
assumed that the earlier the students learned the skills, the higher their incoming 
knowledge would be. However, we found our data suffer a severe problem that most 
items require multiple skills to answer, especially skills learned in earlier grades. 
Consequently, it confounds the relationship between the estimated prior knowledge and 
the grade at which the corresponding skill was taught, thus this approach was not viable. 
Therefore, we still followed the technique in [2]: using external measurement to evaluate 
parameter plausibility. The students in our study had taken a 33-item algebra pre-test 
before using ASSISTment. Taking the pre-test as external measure of incoming 
knowledge, we calculated the correlation between the students’ prior knowledge 
estimated by the models and their pretest scores. In other to acquire the student’s K0 
parameter, we used KT to model the students instead of skills (see [2] for details). 

Table 3 shows four interesting results. The first and the most important one is that more 
Dirichlet distributions generally result in higher plausibility (shown in the second row). 
The correlation values of 0.88 and above are significantly higher than the baseline value 
0.83 from the fixed prior model with p-values < 0.05.   In the 7-distribtuion model, the 
value drops to 0.83. It suggests classifying students in a fine-grained level provides the 
models more confidence about the distributions where the data are from, thus taking the 
extra information specified by the Dirichlet priors, the models converge at more 
believable points. The second result is that we found the evidence of Dirichlet is hurt by 
outliers. As seen in the first column, the Dirichlet model produces lower correlation (0.80 
vs. 0.83) compared to the fixed prior model. However, the Dirichlet model with trimming 
equals the fixed prior model, indicating the necessity of trimming for Dirichlets. 
However, the advantage from trimming decreases as the number of cluster increases, 
until eventually the untrimmed Dirichlet has better performance.  Thus, the power from 
trimming is reduced as presumably the higher similarity of the students in a distribution 
reduced the problem of outliers. 

The third result is the hypothesis that there is an interaction effect between using more 
distributions and using Dirichlets. To confirm that higher plausibility is not simply an 
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result of having additional distributions, we set each distribution’s mean values as the 
fixed priors to train the models (first row of Table 3). We see that fixed prior models 
performance is independent of the number of distributions (except for possible overfitting 
with 6 clusters).  Thus, the improvement from multiple Dirichlet distributions is not an 
artifact of multiple distributions necessarily resulting in better performance. The fourth 
result is shown at the last row of Table 3 where we used cluster centers to represent the 
individual student’s prior knowledge. This approach achieves surprisingly high 
plausibility. With more distributions, it even outperforms the fixed prior models in spite 
of requiring less computation.   

Table 3 Comparison of correlation between prior knowledge and pretest, by number of clusters 

  1 cluster  2 clusters 3 clusters 4 clusters 5 clusters  6 clusters
Fixed  0.83  0.83  0.83  0.83  0.83  0.80 
Dirichlet  0.80  0.83  0.85  0.86  0.88  0.91 
Dirichlet (trimmed)  0.83  0.85  0.85  0.87  0.89  0.85 
Cluster center  N/A  0.77  0.81  0.84  0.87  0.84 

4 Contributions  

This paper presents a new approach for strengthening the fundamental assumption of the 
usage of Dirichlet priors in order to improve the knowledge tracing model’s predictive 
accuracy and parameter plausibility. Although Dirichlets are a solution to the problem of 
parameter plausibility, the assumption that all skills are from a single distribution is 
troubling. Rather than modeling skills as a single homogenous group, we acknowledge 
that similar skills should be modeled similarly. We used clustering techniques to identify 
groups of similar skills, and then modeled those groups with their own, independent 
Dirichlet priors.   

In spite of using multiple Dirichlet distributions, we failed to find any improvement in 
predictive accuracy, which is consistent with the results in our previous work of 
investigating a single Dirichlet distribution. However, we confirmed that using 
distribution centers to fit the data isn’t much worse than using the skill’s individual 
parameter estimates [6].  

For parameter plausibility of modeling skills, it appears using Dirichlets does not produce 
a more believable mastery rate, even when using multiple distributions. It is worth 
pointing out that if there really are skills that students don't learn, the Dirichlet approach 
is better at finding them. We also showed that using multiple Dirichlet distributions to 
model students results in high plausibility of the students’ knowledge parameters.  With 
multiple Dirichlet distributions (6 clusters), the correlation between the model’s 
parameter estimates and the external standards reaches 0.9. We also showed that using 
the cluster centers, rather than individual student estimates, generates plausible results 
too, but with less computational work. 

We found that Dirichlets are likely to be hurt by outliers, both with respect to predictive 
accuracy and parameter plausibility.  For predictive accuracy, the models with trimming 
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perform comparable or even better than not using trimming.  For the student knowledge 
parameter plausibility, trimming resulted in stronger results, except when six clusters 
were used.  To understand this reversal requires additional experimentation.   

Finally, our intuition that modeling a distribution as a single Dirichlet could be hurt since 
the “outliers” are the skills which are drawn from a different distribution has been 
partially supported by the results.   

5 Future work and Conclusions 

There are several unsolved problems related to this work. First of all, predictive accuracy 
is strongly desired in most student modeling applications. We have tried various 
approaches to improve accuracy in the knowledge tracing framework. However, we have 
found that there are no quick wins [2, 4, 5, 8]. We think perhaps only relying on the KT 
model with the basic structure might not be sophisticated enough to account for the 
substantial variability in student problem-solving efforts.  One line of research is to 
consider integrating other useful information with KT, as it makes sense to be aware of 
other variables that might affect student performance such as question difficulty and 
student engagement.  By accounting for other sources of variance, it enables us to better 
estimate the student’s knowledge and (hopefully) consequently have a higher predictive 
accuracy and estimate more plausible parameters.  

Second, considering the existence of multiple distributions seems reasonable and using 
multiple Dirichlet distributions is found to be beneficial in improving parameter 
plausibility. Dirichlet priors work fine in parameter plausibility on the student models, 
but don’t have apparent benefit for skill models. It is an important task to understand how 
to overcome this issue, or even determine if it is a problem at all.  At present, we lack the 
strong domain-driven parameter plausibility metric that was used in the initial work with 
Dirichlets for reading [5]. Determining better metrics for the domain of mathematics, or 
even better domain-independent metrics is a high priority.  Human-generated Dirichlets 
might be a solution, as the single attempt [5] did result in more plausible parameters.  
Again, if we had more powerful parameter evaluation metrics we could better determine 
whether using human knowledge is a promising direction.  It is interesting to see the 
outcomes from using other techniques to identify the distributions, such as latent 
Dirichlet allocation (LDA [10]), which is a generative model that allows sets of 
observations to be explained by unobserved groups. In this context, skills can be 
considered from several unobserved groups and each of them can be represented by a 
Dirichlet distribution. Thus, LDA is a promising technique rather than using clustering.   

There is a limitation in this work. We took the benefit of looking at the test dataset for 
determining the number of clusters where the models result in the best performance. 
However, a better way that would be conducted in the future work is to use a tuning 
dataset besides the training and test datasets. This approach would enable us to tweak our 
models based on the models’ performances on the tuning data, and then validate our 
models on the test data. 
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This paper has explored the idea of integrating multiple Dirichlet distributions with the 
knowledge tracing model. In terms of predictive accuracy, we failed to find any 
improvement contributed by the proposed technique.  This work provides some 
additional support that using the using cluster centers is a reasonable approach. We found 
that, with multiple Dirichlet distributions, student knowledge parameters achieved high 
plausibility, even when using cluster centers to represent student knowledge. We have 
also found Dirichlet priors could be hurt by outliers, and found that first trimming the 
data before Dirichlet parameter estimations usually gives better performance.  
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