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Abstract.  Curriculum planning is perhaps one of the most important tasks 

teachers must perform before instruction.  While this task is facilitated by a 

wealth of existing online tools and resources, teachers are increasingly over-

whelmed with finding, adapting and aligning relevant resources that support 

them in their planning.  Consequently, ripe research opportunities exist to study 

and understand online planning behavior in order to more generally characterize 

planning behavior.  In this paper, we introduce a web-based curriculum planning 

tool and study its use by middle and high school Earth science teachers.  We ex-

amine the web analytics component of the tool and apply clustering algorithms 

to model and discover patterns of the use within the system.  Our initial results 

provide insights into the use of the tool over time and indicate teachers are en-

gaging in behavior that show affinity for the use of interactive digital resources 

as well as social sharing behaviors.  These results show tremendous promise in 

developing teacher-centric analysis techniques to improve planning technologies 

and techniques to study online curriculum planning patterns. 

1 Introduction 

A large body of research suggests that teachers are the single most important influence on 

students‟ academic achievement [1]. Thus, helping teachers do their jobs better should 

lead to improved student outcomes. One of the specific pedagogical techniques now be-

ing demanded of many K-12 teachers is differentiated instruction. Differentiated instruc-

tion involves the customization of curriculum and teaching practices to better foster stu-

dent understanding of course material [17]. An example of differentiated instruction 

would be a teacher who uses animations and graphic images to impart a science concept 

to his students because he has discovered his largely immigrant population of students 

struggles with English reading comprehension. Given the increasing racial, ethnic, and 

linguistic diversity in American K-12 schools, differentiated instruction is becoming 

more important than ever precisely because a „one size fits all‟ approach to teaching can-

not reach all of today‟s diverse student body. 

At the same time that differentiated instruction is being stressed in K-12, the Internet is 

changing the educational landscape to a degree not seen since the introduction of person-

al computers in the 1980s [11]. As Internet connectivity becomes available in more and 

more classrooms, cloud-based applications and databases have become increasingly im-

portant both for teachers‟ instructional practices and students‟ learning [3]. Our study lay 

at the intersection of these two important trends – the drive to differentiate instruction and 

the widening availability of the Internet in educational contexts. 

One of the challenges of differentiating instruction is developing supplementary educa-

tional materials that target specific students‟ learning needs [17]. That is, given a com-

mon curriculum, this group of students may require additional visual aids to help them 

grasp a concept while that group of students might benefit most from an extra hands-on 
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activity that reinforces a lesson. The Internet provides a portal to a nearly infinite set of 

digital resources that could help teachers in their differentiation of instruction, but the 

unmanaged nature of the Internet places the burden of filtering and evaluating digital re-

sources on teachers, adding to their already significant workload. If this filtering and 

evaluation process could be at least partially automated, teachers would be able to focus 

on teaching rather than on preparing to teach.  

In this paper, we examine two research dimensions related to the process of differentiat-

ing instruction: (1) learning science for online curriculum planning and (2) educational 

informatics for application usage pattern detection and analysis. Since curriculum plan-

ning is a task which every teacher must perform before instruction, we begin by describ-

ing a Web-based application that is designed to help teachers review curricular objec-

tives, locate relevant supplementary digital resources, and develop differentiated instruc-

tional plans that connect their curricular goals and digital materials with classroom activi-

ties and assessments.  

The first research dimension is framed by a few key research questions : (1) What are the 

behavioral components of Web-based curricular planning? (2) How do these behaviors 

play out as patterns in online curricular planning? (3) What techniques are used to meas-

ure the effectiveness of curriculum planning behavior? (4) How can or do online tools 

and resources shape curriculum planning behavior? (5) How do online tools and re-

sources impact curriculum planning outcomes? Not all of these questions will be covered 

within the scope of this study.  

With an application context to study the learning science component of curriculum plan-

ning, our second research interest is focused on developing and applying tools and tech-

niques for observing and classifying teachers‟ online behavior in educational applica-

tions. This research offers a unique view into the online usage patterns and behaviors of 

educators by examining the use of a curriculum planning application in the web mining 

and analytics context. Specifically, we observe and analyze the use of system features 

and functionality as well as commonly used resources available within the system to 

gather a more complete understanding of system use. Using web analytics and clustering 

algorithms, we develop the education informatics dimension of this research, framed by 

the following questions : (1) What computational tools can be used to discover and model 

the online behavior patterns of teachers engaged in curriculum planning? (2) What com-

putational tools can be used to predict the online behavior of teachers once this behavior 

is modeled? (3) What techniques can be used to maximize teacher‟s use of online tools 

and resources? 

2 Research Context 

While much of the online learning science research to date tends to focus on students‟ 

behaviors vis-á-vis computer-assisted learning [12], little research has been done to un-

derstand teacher behavior in online curriculum planning tasks. The online behaviors of 

teachers performing planning tasks online may hold useful clues to the development of 

applications that not only improve student outcomes, but also teacher outcomes, particu-

larly as they relate to improving teacher access to and use of digital materials within the 
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classroom instruction and learning context. This research presupposes that teachers‟ on-

line activities are important in their own right and worthy of study. 

Two broad contexts are applied to the research : the user context and application context. 

The focal point of the user context, described in more detail below, is middle and high 

school Earth science teachers. The corresponding application context is a web-based cur-

riculum planning application called the Curriculum Customization Service (CCS) [15], 

designed to support those same middle and high school teachers in curriculum planning 

tasks. The application was designed to provide general support for accessing, searching, 

browsing, storing, sharing and reviewing curriculum goals, objectives, guidelines, mate-

rials and resources for the middle and high school Earth science curriculum. 

2.1 User Context 

The users of the CCS are Earth science teachers at the 6th and 9th grade levels within a 

medium sized urban school district. Nearly 120 sixth and ninth grade Earth science 

teachers within the school district were invited (but not required) to use the CCS program 

during the 2009-2010 school year. In July 2009, a four-hour face-to-face training session 

(and a Web-based teleconference for those who could not attend)  was carried out to 

demonstrate the features and use of the CCS. User account access to the CCS was pro-

vided during the remainder of the summer so that teachers could further acquaint them-

selves with the tool and learn more about its features before the start of the semester. Us-

ers represent a wide cross section of experience, planning skill, technological ability and 

interests, with user teaching experience spanned from first year teacher to more than 30 

years of experience. No information was collected before the study window about who 

would choose to participate or who would plan to fully use the tool during the semester, 

though a survey was given to teachers before the semester to probe their familiarity with 

technology within the classroom and initial perceptions of the CCS tool during the train-

ing sessions. The survey also provided further insights about the teachers‟ technology-

related skills and perceptions, as well as demographic profile information. 

2.2  Application Context 

The CCS application is a Web-based application that provides access to the specific con-

tent of the 6th and 9th grade Earth science curriculum of the participating school district 

(see Figure 1). The application has several unique features that target teacher-centric be-

haviors around curriculum planning and customization, specifically planning, storing and 

sharing, and searching. First, the CCS encompasses the entirety of the district-wide Earth 

science curriculum – that is it contains all the curriculum units, goals and objectives for 

the district-wide 6th and 9th grade Earth science curriculum.   

Traditional curriculum materials that were typically provided in paper form are instantly 

accessible digitally through the CCS. Within a single environment, teachers also can 

access critical planning artifacts : all of the Earth science materials for their lesson plan-

ning, including digital access to publisher materials (e.g. textbook content, assessments), 

curriculum learning goals and objectives, as well as relevant standards and concept hie-

rarchies. Second, the CCS provides instant access to a number of digital resources that 
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are automatically coupled with relevant curriculum unit topics. Teachers accessing unit-

level goals have access to pre-fetched digital resources that match the topics of the unit. 

This feature displays the most relevant and useful materials for quick access, circumvent-

ing the need for custom (and potentially time-consuming) searches to find the same mate-

rials. Third, a customizable space to save resources of interest, called “My Stuff,” is pro-

vided to encourage teachers to privately save what they may consider to be useful re-

sources. This feature also has the ability to make available to other CCS users the re-

sources a teacher may think his or her colleagues might also find useful. Therefore, with-

in the same environment as planning tasks, teachers can engage fully in customization 

activities : finding and saving materials of value, sharing and contributing those materials 

to the participating teachers at large, rating, tagging and even uploading arbitrary mate-

rials they wish to store for later use within the planning environment or share with other 

users. Finally, since searching for contextualized materials is a difficult task within gener-

ic search engines (e.g. Google, Yahoo!, Bing), a customized search engine was provided 

within the application that returns concept-relevant digital resources obtained from search 

results against the Digital Library for Earth Systems Education (DLESE), a high quality 

and highly regarded Earth systems digital library [16].  

 

Figure 1: The Curriculum Customization Service  User Interface  

(A few sample features are in highlighted in red) 

The CCS provides a single entry point for teachers to efficiently develop and execute 

their most important curriculum planning and customization tasks, and as such provides a 

powerful research platform for several key reasons : (1) it is bounded and constrained to 
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the most frequently used curriculum planning task space used by teachers, thus providing 

a single place to examine teachers‟ behavior around this task, (2) the user pool is con-

strained to a diverse but specific group of users, middle and high school Earth science 

teachers, so relationships between these users will be more amenable to analysis, (3) the 

subject area of analysis is narrowed to a middle and high school Earth science curriculum 

focus, thus amplifying inter-user and inter-group comparison and analysis, and (4) the 

nature of web-based application activity analysis is well understood and supported by 

techniques that are robust and effective. 

3 Methodology 

The goal of our methodology is to understand and prepare the required data to run expe-

riments that allow us to detect patterns of use for further evaluation. The research metho-

dology of this initial study has four components : (1) select and prepare an initial data set, 

(2) select an experimental feature set, (3) perform clustering experiments, (4) analyze ex-

perimental results. Our research draws on widely understood techniques for web server 

log analysis [11] of the CCS application. While it is not difficult to determine system use 

frequency, such as commonly visited pages or resources, frequent use alone provides a 

narrow view of actual use. System components are often used in concert with one anoth-

er, thus providing different views of system use that may reveal unexpected or unusual 

relationships.  We therefore turn to clustering algorithms to help build connections 

among the CCS system components that make up the experimental feature set.  

3.1 Data Set and Data Filtering 

Data for the initial set of experiments in this study was derived from the server logs of the 

core CCS system. The CCS system has a number of unique client-side scripting features 

that are not usually captured in server logs because there is typically no direct server inte-

raction during such activity. This client-side activity was capture by instrumentation that 

stored such activity as if it were direct server interaction. All users of the system were 

given unique login IDs that were captured during session activity over a 16 week period 

from August 2009 to December 2009.  

 

Allowing for the broad use of the CCS, session duration was defined to accommodate a 

complete working day of activity. Sessions longer than 10 hours or shorter than 30 

seconds with fewer than 4 actions were eliminated from the data set. While the minimum 

session length may seem short, there were some sessions detected that lasted for abbre-

viated periods of time but nonetheless showed meaningful activity. Logging in to the sys-

tem to access a singular, specific resource is one such example. Other filtering activities 

involved removing data with user IDs of non-teacher users not part of the research study. 

3.2 Experimental Features 

Feature selection for data mining is a difficult task and requires many considerations to 

be both valuable and effective [12]. For the initial research experiments, the user session 

was abstracted and examined for features to be used in the clustering experiments de-

tailed in section 5. In all, 27 features were selected for our initial feature set.  
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Web sessions are usually seen as a  temporal ordered stream of clicks (click stream). 

However, for our initial research these sessions were simplified into a larger grained bag 

of clicks. Instead of examining the transitions from one click to another, we assign and 

examine click types within the system for a given session. This bag of clicks model sim-

plifies log processing and feature selection and borrows similar intuitions found in bag of 

words models in linguistic processing, where word frequency is used to analyze docu-

ment content, sometimes arriving at similar conclusions as temporal, structural or seman-

tic analysis with far less complexity. 

Each client-side UI click has one of 5 associated click types which our initial experiments 

exploit as a feature. Furthermore, since click stream data is ultimately important in under-

standing session behavior, the number of clicks within a session was also selected as a 

feature. It would not be unreasonable to expect sessions with high click counts to 

represent sessions of interest. In addition to the number of clicks, session duration or the 

amount of time (in seconds) a user spends interacting with the system, was chosen as a 

feature.  

Other data was also selected as part of the initial feature set selection process. Since the 

CCS is a highly visual and largely client-side interaction environment, commonly used 

visual controls of the environment were natural targets for the experimental feature set. 

This visual features set was narrowed to the top 20 visual features of the interface, which 

was computed by flattening the visual hierarchy of the interface controls and examining 

the global use frequencies of each of these visual components. 

User activity can be measured in many ways and for the purpose of this study, we make 

note of several server log data. First, total actions analyzed provides an indication of how 

many discrete actions were logged from the server, discrete sessions details the total 

number of sessions in an interval (monthly, weekly, etc.), and unique user accounts 
shows the number of unique user accounts in a period. The total number of actions over 

the 16 week data collection period was 17,527 in 1,370 total sessions over 82 unique user 

accounts, detailed in Table 1.  

Table 1 : Monthly data summary 

Month 
Total 

Actions 

Analyzed 

Discrete 

Sessions 

Unique 

User 

Accounts 
September 7,371 526 82 

October 3,626 331 65 

November 4,698 337 60 

December 1,832 176 50 

 

Table 2 : Cluster ranks and relative size (%) 

Rank K12 EM12 EM
*
 

1 58% 47% 37% 

2 14% 17% 26% 

3 8% 11% 11% 

4 8% 5% 10% 

5 5% 5% – 

6 4% – – 

4 Algorithms and Feature Analysis 

Clustering algorithms are commonly used to find patterns within large data sets [2, 6, 7] 

and two clustering algorithms were chosen to study the initial data set. First, the K-means 

clustering algorithm was used. K-means is an unsupervised learning, iterative descent al-
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gorithm that partitions n data observations into K clusters. Each cluster is assigned a cen-

troid and cluster membership is determined by minimizing the distance from each cluster 

member and the centroid. The second algorithm in the initial experiment was the Expec-

tation-Maximization (EM) algorithm [4]. EM is a model-based iterative algorithm that 

examines data observations and represents each cluster as a probability distribution. Giv-

en n data observations, EM maximizes the likelihood of the observed distributions by es-

timating the means and standard deviations of each cluster. 

Neither algorithm is without flaws and our experimental results in section 6 show this. K-

means primary weakness is that the number of clusters must be determined a priori. This 

weakness, however, is inherent in many partitional clustering algorithms and may require 

an experimentally selected n. Another weakness is that K-means is sensitive to outliers – 

data that are distant from the centroid may pull the centroid away from the real centroid 

in a given data set. Finally, it is difficult to understanding which feature contributes more 

to cluster membership, since every feature is assumed to have the same weights. EM‟s 

core weaknesses are the relative speed with which the clusters converge, and the possibil-

ity of convergence at the boundary of a cluster. 

5 Experiments 

Two experiments were performed on the initial feature set with a few variations for com-

parison. The first experiment was designed to run the K-means algorithm with n = 12 and 

the Euclidean distance function, referred to as K12. The n for this initial experiment was 

derived from the total number of sessions analyzed over the period (~1,400) divided by 

the number of users invited to participate (~120). This provides a baseline for comparison 

with the other algorithms. For comparison, the expectation maximization algorithm was 

chosen for the remainder of the experiments. EM was first chosen to automatically select 

n clusters using cross validation, referred to as EM
*
. This provided a baseline to compare 

the algorithm's performance against the K-means algorithm (K12). The last experiment 

was run using EM again with a fixed cluster size of 12, referred to as EM12. 

6 Evaluation and Results 

Table 2  shows each of the algorithms and the sizes of the largest clusters they produced.  

EM
*
 produced 10 clusters, the top 4 of which represent 84% of all the data. Similarly, for 

EM12, the top 5 largest clusters represent 84% of the data. Finally, K12 shows a similar 

trend, with the top 5 clusters representing 87% of the data. For the purposes of evaluation 

we consider the top 4 clusters in EM
*
, top 5 in EM12, and the top 6 clusters in K12, since 

the K12 distribution of clusters was more sparse.  

Table 3 shows the features with the greatest means of the top clusters for each algorithm. 

The cluster labels represent UI features for example, A1 represents clicks on the Interac-

tive Resources tab, A2 the Shared Stuff for This Concept tab, A6 for the Embedded As-

sessments toggle element, A12 for the Images/Visuals tab, and so on.  The top features of 

the largest cluster in EM
*
 (A1, A2 and A4) correspond to CCS UI tab clicks on Interac-

tive Resources, Shared Stuff for This Concept and Shared Stuff for This Activity. This top 

cluster suggests a pattern of activity that is focused on both CCS-suggested interactive 
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resources and shared resources that others have saved, which may indicate the impor-

tance of  what others have saved as well the automatically generated interactive resource 

list. 

The  EM12 and K12 algorithms indicate very similar patterns. For example, EM12‟s 

largest cluster shows the exact same pattern as EM
*
. Similarly, K12 shows A1, A3 and 

A4 as its top features. Examining other clusters show cluster 4 of K12 and cluster 11 of 

EM12 share similar patterns over features A3, A6, A8 and A11. This pattern corresponds 

to clicks on Instructional Support Materials, Embedded Assessments, Answers and 

Teaching Tips system areas. Similarly, cluster 2 of K12 and cluster 1 of EM12 share sim-

ilar features along A3, A7 and A14, which correspond to the Instructional Support Mate-

rials and Activities tabs, suggesting time being spent on preparing or reviewing student 

activities and corresponding materials. 

Table 3 : Top cluster features and their cluster membership 

 Cluster # A1 A2 A3 A4 A5 A6 A7 A8 A11 A12 A13 A14 A16 

K
1

2
 

1 (8%)              

2 (5%)              

3 (14%)              

4 (4%)              

8 (4%)              

9 (58%)              

E
M

*
 

0 (26%)              

1 (11%)              

6 (10%)              

7 (37%)              

E
M

1
2

 

1 (5%)              

3 (5%)              

6 (17%)              

7 (47%)              

11 (11%)              

 

Each cluster algorithm revealed data that was consistent with overall system use seen in 

the server logs, though the smaller cluster sizes show greater differentiation of features. 

That there was not complete agreement in cluster features or sizes, however, may indicate 

more experiments are required. 

7 Related Work 

Much of the work here has been influenced by the body of work in web use analytics, 

which break down into two categories : (1) content analytics and (2) usage analytics [12]. 

This work is focused on usage analytics. Broadly, use analytics aims at understanding the 

aggregate activity and use patterns of a website primarily using advanced server log anal-

ysis. Such analytics often aim at understanding aspects of the site that are popular, con-

tent that seems to be frequently accessed, times of frequent/infrequent use, etc. with the 

goal of developing a sense of where the site could be improved or enhanced for optimal 
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performance, increased advertisement penetration or site content enhancement through 

recommender techniques [13]. Such use analytics are invaluable for developing site con-

tent, but also useful in developing models of user behavior. Website session characteris-

tics are commonly studied to determine how users are accessing the site and statistical 

techniques are used to determine tasks being performed within a website, revealing clus-

ter usage patterns in the ways we have discussed here. Markov models have been used to 

derive the meaning of certain behaviors within a session by observing page transitions 

and their probabilities to develop behavioral models of use [5]. Work has also been done 

to connect page semantics to web usage, for example [9] use Probabilistic Latent Seman-

tic Analysis to determine if the content and subsequent usage of a page implies an under-

lying task. Finally, user interface event mining [8] aims at developing techniques to ex-

ploit detailed user experience and interaction data. 

8 Discussion 

The initial experiments presented in this paper offer some insights into the planning be-

havior of teachers online. However, two areas of improvement can be immediately dis-

cussed : improved feature selection and expanded algorithm experiments and compari-

son. The initial experimental feature set provides interesting insights into the behavior of 

teachers for the visual components selected in this initial observation. However, the flat-

tened visual hierarchy of the CCS interface only provides a convenient way to discretize 

each visual element of the system without advancing the notion of the semantic structure 

of this hierarchy. For example, while it is clear that the Interactive Resources tab of the 

interface was widely used, there are substructures under that tab which also contain wide-

ly used features. The current feature set is not capable of capturing this hierarchy or its 

implied semantic structure, though considering it might yield new insights into the se-

mantics of the features commonly accessed by users. Further extensions to the feature set 

might also include adding link-to-link features, for example, exploring high frequency 

transitions might reveal unique relationships between UI features and functionality. 

The EM and K-means algorithms are commonly used in data mining, and while some 

clusters in K12 and EM12 had similar characteristics, all of the top clusters were not sim-

ilar enough to say both algorithms were converging on exactly the same feature sets. This 

may underscore the differences in each algorithm or in the way they each treat the fea-

tures. It may also reinforce the effects parameter sensitivity (e.g. n clusters) and feature 

selections have on the results. The focus of the next round of experiments will be to expe-

riment further with EM and K-means parameters, and also to expand algorithm coverage 

to hierarchical-based algorithms. Such experimentation may also fit well with the seman-

tic features already suggested and allow a comparison of the hierarchies that are produced 

from a semantic-based structure with the clusters already observed.  

As with all learning algorithms, it is challenging to determining if the experimental data 

would be predicted by and hold up to some gold standard or human expert evaluation. 

Determining if the discovered behaviors match the observed data in practice is difficult 

and further research is underway to study actual and reported system use through on-site 

observation and survey instruments, which should lead to a higher fidelity confirmation 

of the patterns discovered thus far. 
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