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Abstract. This research investigates the detection of student meta-cognitive 
planning processes in real-time using log tracing techniques. We use fine and 
coarse-grained data distillation, in combination with coarse-grained text replay 
coding, in order to develop detectors for students’ planning of experiments in 
Science Assistments, an assessment and tutoring system for scientific inquiry. 
The goal is to recognize student inquiry planning behavior in real-time as the 
student conducts inquiry in a micro-world; the eventual goal is to provide real-
time scaffolding of scientific inquiry. 

1 Introduction 

Self-regulation is recognized as a highly important aspect of learning [3, 12, 25]. Self-
regulation includes planning, meta-cognitive monitoring, reflection, and checking 
outcomes. While several studies on self-regulation within computer-based learning 
environments have been conducted [15, 18, 23, 27], there is no consensus about how to 
automatically measure self-regulation [3, 23]. Furthermore, very few studies have 
addressed planning within the context of scientific inquiry. Some research has shown that 
deliberate scaffolding of self-regulation leads to better learning in science [22], but it is 
difficult to figure out what to measure [15]. Our study seeks to demonstrate a method for 
detecting one aspect of self-regulation, students’ planning in the context of scientific 
inquiry. Planning is one of the inquiry skills outlined by the National Science Education 
Standards [21]. Since inquiry problems require several meta-cognitive processes, one of 
which is planning [11], detecting students’ inquiry strategies and skills, including 
planning, is a critical first step in order to provide students with support in the form of 
computer-based adaptive scaffolding during real time inquiry [13, 14]. This study brings 
together research on self-regulation and planning during scientific inquiry.  

In this paper, we present a machine-learned model that detects student planning by 
tracing time spent looking at data tables and hypothesis lists within our inquiry-based 
learning environment, Science Assistments (http://users.wpi.edu/~sci_assistments; [13, 
14]) and microworld for Phase Change. Planning is required especially when applying 
the control for variables strategy (CVS), a key cognitive strategy within the domain [10], 
but also in deciding what experiments are needed. We leverage from the success of [6], in 
using text replays [4] to provide training instances for machine-learned detectors of 
gaming the system within intelligent tutors. Specifically, by manually inspecting and 
coding a proportion of the student inquiry sequences using text replay tagging of log 
files, we extended this approach in order to develop detectors that determine whether a 
student is planning by viewing data from their previous trials and/or their hypotheses. 
Our text replay coding approach differs from previous text replays in two ways. First, 
whereas text replays allow for the classification of a replay clip as a single category (out 
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of a set of categories), text replay tagging allows multiple tags to be associated with one 
clip. For example, a clip may be coded as using the data table for planning, using the 
hypothesis table for planning, both, or neither. Second, the behaviors we are studying are 
temporally more coarse-grained than in [6], displaying the entire sequence of 
experimental trials for part of a hypothesis rather than specific trials. In addition to this 
coding, we summarized each clip by creating a feature set from the action data. In 
accordance with our coding, we consider problem-level features of the student data rather 
than step or transaction-level data, unlike in many prior EDM models of student behavior 
(e.g. [2, 8, 9, 24, 26]). Using the coding and the feature set, we created detectors for 
planning. 

2 Learning Environment 

Our phase change environment (Figure 1), hosted by the Science Assistments [13, 14], 
enabled students to engage in authentic inquiry using a microworld and inquiry support 
tools. Each problem in our learning environment required students to conduct 
experiments to determine if a particular independent variable, e.g., container size, 
affected various outcomes like the melting point or boiling point of a substance.  

 

Figure 1. Hypothesizing widget (left) and data collection panel (right) for the phase change microworld. 

We scaffold students’ inquiry processes by organizing these tasks into different inquiry 
stages, namely, “observe”, “hypothesize”, “experiment”, and “analyze data”. Students 
start in the hypothesizing stage and move between stages in a suggested order but can 
navigate back and forth between some of the inquiry phases. For example, from the 
“analysis” stage students can collect more data by returning to the “experiment” stage, 
they can create new hypotheses by returning to the “hypothesize” stage (starting a new 
inquiry loop), or can submit their final experimentation procedures and analyses and 
begin the next problem. While in the hypothesizing stage, they can either explore the 
microworld or begin collecting data in the experiment phase. Finally, within the 
experiment phase, students can only move to the analysis phase. 

142



This learning environment has a moderate degree of learner control, less than in purely 
exploratory learning environments [2], but more than in model-tracing tutors [17] or 
constraint-based tutors [20]. Though our scaffolding restricts when students can switch 
inquiry phases, there is enough freedom such that students can approach these inquiry 
tasks in many ways, e.g., while experimenting, students could set up and run as many 
different experiments as they desired. 

In the Hypothesis stage, the student is prompted to build a hypothesis using drop down 
boxes (Hypothesis Builder). The fields are: independent variable, change to the 
independent variable, dependent variable, and change to dependent variable. So, for 
example, the student can change the first [Choose One…] box to “amount of ice”, which 
enables the next box. Proceeding, the student can create the hypothesis “If I change the 
[amount of ice] so that it [increases], the [melting point][doesn’t change].  

When students reach the experimentation stage, they can then change independent 
variables, such as Level of Heat, and see the results within the microworld by running a 
trial (by clicking on Run). They can also view representations of their full set of 
hypotheses (by clicking on Show hypotheses list) and they can view the trial run data 
(clicking on Show Table). Both the data table and the hypothesis list provide external 
memory aid, allowing the student use information about previous decisions to reflect and 
plan new experimental trials. 

As students solve these inquiry problems, they could engage in a number of behavior 
patterns. Particular to collecting data, systematic [24] students collect data that test their 
hypotheses by designing and running controlled experiments. Additionally, such students 
may use the table tool and hypothesis list to reflect upon their results and plan for 
additional experiments they may need to run. Students who are unsystematic in their 
experimental design and collection of data may exhibit haphazard behaviors such as: 
constructing experiments that do not test their hypotheses, not collecting enough data to 
support their hypotheses, not using CVS, or running the same experimental setup 
multiple times [17].  

3 Data Set 

Participants were 148 eighth grade students, ranging in age from 12-14 years, from a 
public middle school in Central Massachusetts. These students used the phase change  
microworld. Students engaged in authentic inquiry problems using the phase change and 
density microworlds within the Science Assistments learning environment. As part of the 
phase change activities, students attempted to complete four tasks using our interactive 
tools. 

Each of these students completed at least one data collection activity in the phase change 
environment (two other students did not use the microworld, and were excluded from 
analysis). As students solved these tasks, we recorded fine-grained actions within the 
inquiry support tools and microworlds. The set of actions logged included creating 
hypotheses, setting up experiments, showing or hiding support tools, running 
experiments, creating interpretations of data, and transitioning between inquiry activities 
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(i.e., moving from hypothesizing to data collection). Each action’s type, current and 
previous values (where applicable – for instance, a variable’s value), and timestamp were 
recorded. In all, 27,257 student actions for phase change were logged. These served as 
the basis for generating text replay clips consisting of contiguous sequences of actions 
specific to experimenting. 

4 Method 

The data used for this study was collected by Science Assistments, which logs every 
widget action performed by the student including button clicks, checkbox choices, etc. 
Each action has a time stamp, student/problem identifiers, and widget information, and is 
tagged as to its step (step tag) in the inquiry process. The step tags are a level above a 
simple action (this is captured by the widget information), representing a step within the 
inquiry process, across microworlds. This allows us to analyze similar actions across 
microworlds. These step tags are used for two purposes: as markers to create clips for text 
replay coding and to categorize data for fine-grain feature extraction. 

4.1 Text Replay Coding 

Text replay hand coding presented our team with two significant challenges: specific 
codes and grain size. In designing our text replays, it was necessary to use a coarser 
grain-size than in prior versions of this method [4]. In particular, it is necessary to show 
significant periods of experimentation in order to put usage of the table and hypothesis 
list into context, while limiting clip size to reduce memory load. We decided to use clips 
that include both the hypothesis and the experiment stages, which is long enough to see 
context, but short enough to tractably code. Another important issue in grain-size 
selection is that trial run data from one hypothesis test can be used in another to make 
inferences about the hypothesis at hand (for instance, by comparing a current trial to one 
conducted earlier). To compensate for this, we code using both the actions in testing the 
current hypothesis, and cumulative measures which include actions performed when 
testing previous hypotheses. 

 Figure 2 - Clip showing a single Hypothesis-Experiment run (clips may be significantly longer) 

To support coding in this fashion, a new tool for text replay tagging was developed in 
Ruby, shown in Figure 2. The start of the clip is triggered by a hypothesis variable 
change after the beginning of a new problem. The tool displays all student actions 
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(hypothesis and experiment) until the student transitions to the analysis stage. Subsequent 
clips include previous clips and any single new cycle which includes the Hypothesis and 
Experiment stage. A clip could be tagged with one of 10 tags: “Never Change Variables”, 
“Repeat Trials”, “Non-Interpretable Action Sequence”, “Indecisiveness”, “Used CVS”, 
“Tested Hypothesis”, “Used Table to Plan”, “Used Hypothesis Viewer to Plan”, “No 
Activity”, and “Bad Data.” Specific to our study, we tagged a clip as “Used Table to 
Plan” (TablePlan) if the clip contained actions indicative that the student viewed the trial 
run data table in a way consistent with planning for subsequent trials. “Used Hypothesis 
Viewer to Plan” (HypPlan) was chosen if the clip had actions indicating that the student 
viewed the hypotheses list in a way consistent with planning for subsequent trials.  

4.2 Coding Agreement 

Two coders (the third and fourth authors) tagged the data collection clips using at least 
one of the ten tags. To ensure that a representative range of student clips were coded, we 
stratified our sample of the clips on condition, student, problem, and within-problem clip 
order (e.g. first clip, second clip, etc.). The corpus of hand-coded clips contained exactly 
one randomly selected clip from each problem each student encountered, resulting in 581 
clips. Each coder tagged the first 50 clips; the remaining clips were split between the 
coders. Of the 50 clips tagged, 7 were discarded because of a problem with an early 
version of the text replay tool where the problem number of the code did not match the 
problem number of the microworld.  

For the 43 clips tagged by each coder, there was high overall tagging agreement, average 
 = 0.86. Of particular relevance to this study, there was strikingly high agreement on the 
TablePlan,  and of HypPlan, also Kappa at this level suggests particularly 
good agreement between coders, which was achieved in part through extensive 
discussion and joint labeling prior to the inter-rater reliability session. In particular, the 
coders found these two categories easy to code, as students either tended to spend 
significant amounts of time reflecting on these tools, or viewed them extremely briefly 
(or not at all). These categories were also relatively rare, potentially increasing  by 
chance; only 8% of clips involved TablePlan and only 4% of clips involved HypPlan. 

4.3 Feature Distillation 

Features extracted can be grouped into 10 categories: all actions, total trial runs, 
incomplete trial runs, complete trial runs, pauses, data table display, hypothesis list 
display, field changes in Hypothesis Builder, hypothesis made, and microworld variable 
changes. For each of these categories we traced the number of times the action and the 
time taken for each action. Two other categories were included indirectly related to 
actions: the number trials where only one independent variable was different between the 
two trials and the number of times a trial was repeated. These last two had no times 
associated with them. 

The microworld activity was divided into tasks in which the focus was a specific 
independent variable. Since there were four independent variables, there were four tasks. 
Within a task, the student is allowed to make and test several hypotheses. For each of the 
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12 categories above, we extracted data for each hypothesis the student worked on (non-
cumulative data), and across all hypotheses in the task (cumulative data). The reason for 
this is that within each task, the data table accumulates the trial run data across 
hypotheses. This allows the students to compare trial runs testing previous hypotheses 
with the runs made in the current hypothesis. 

Lastly, the time data was distilled to obtain the following values: minimum, maximum, 
standard deviation, mean and mode. It is these values plus the count which was used in 
the machine learning model. This data was arranged in a comma-delimited flat file 
suitable for input into RapidMiner. The data was divided into files, one for each coded 
feature. The coded feature being the first item on the line, followed by the distilled 
features described above. 

4.4 Machine Learning Algorithms 

Machine-learned detectors of the two behavioral patterns were developed within 
RapidMiner 4.6 [19] using the default settings. Detectors were built using J48 decision 
trees, with automated pruning to control for over-fitting, the same technique used in [26] 
and [6]. Six-fold cross-validation was conducted at the student level (e.g. detectors are 
trained on five groups of students and tested on a sixth group of students). By cross-
validating at this level, we increase confidence that detectors will be accurate for new 
groups of students. We assessed the classifiers using two metrics. First, we used A’ [16]. 
A' is the probability that if the detector is comparing two clips, one involving the 
category of interest (TablePlan or HypPlan) and one not involving that category, it will 
correctly identify which clip is which. A' is equivalent to both the area under the ROC 
curve in signal detection theory, and to W, the Wilcoxon statistic [16]. A model with an 
A' of 0.5 performs at chance, and a model with an A' of 1.0 performs perfectly. In these 
analyses, A’ was used at the level of clips, rather than students. Statistical tests for A’ are 
not presented in this paper. The most appropriate statistical test for A’ in data across 
students is to calculate A’ and standard error for each student for each model, compare 
using Z tests, and then aggregate across students using Stouffer’s method [5] – however, 
the standard error formula for A’ [16] requires multiple examples from each category for 
each student, which is infeasible in the small samples obtained for each student in our 
text replay tagging. Another possible method, ignoring student-level differences to 
increase example counts, biases undesirably in favor of statistical significance. 

Second, we used Kappa (), which assesses whether the detector identifies is better than 
chance at identifying the correct action sequences as involving the category of interest. A 
Kappa of 0 indicates that the detector performs at chance, and a Kappa of 1 indicates that 
the detector performs perfectly. As Kappa looks only at the final label, whereas A’ looks 
at the classifier’s degree of confidence, A’ can be more sensitive to uncertainty in 
classification than Kappa.  

5  Results 

We constructed and tested detectors using our corpus of hand-coded clips. TablePlan and 
HypPlan detectors were constructed from a combination of the subset of the first 43 clips 
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that the two coders agreed on, the remaining clips, tagged separately by the two coders. 
In total, 570 tagged clips were used for each detector. Of these clips, 47 out of 570 were 
tagged with TablePlan (8%) and 20 out of 570 (4%) were tagged with HypPlan. 

Table 1. Best results for detectors of each coding category 

Category A’  Attribute type % students 
in data 

HypPlan .93 .14 Non-cumulative 8% 

TablePlan .94 .46 Cumulative 4% 

 

Detectors were generated for each behavior using J48 decision trees and two sets of 
attributes, cumulative and non-cumulative attributes. Thus, four different detectors were 
constructed two for TablePlan and two for HypPlan. The TablePlan detector using 
cumulative attributes (A’ = .94,  = .46) performed slightly better than the detector built 
with non-cumulative attributes (A’ = .96,  = .36). Both versions of the detector achieved 
excellent performance, comparable to detectors of gaming the system refined over several 
years (e.g., Baker & de Carvalho, 2008), and are very likely to be appropriate for use in 
interventions. The HypPlan detectors did not perform as well, achieving A’ = 0.93,  = 
0.14 for the non-cumulative attributes and A’=.97,  = 0.02 for the cumulative attributes. 
The substantial difference between A’ and is unusual. It appears that what happened in 
this case is that the model, on cross-validation, classified many clips incorrectly with low 
confidence; in other words, A’ by considering pair-wise comparisons catches the overall 
rank-ordered correctness of the detector across confidence values even though many clips 
were mis-categorized at the specific threshold chosen by the algorithm. One possibility is 
that the low number of HypPlan labels in the data set made the detectors more prone to 
over-fitting. This result suggests that the HypPlan detector is probably acceptable for fail-
soft interventions, where students assessed with low confidence (in either direction) can 
receive interventions that are not costly if mis-applied.  

6 Discussion and Conclusions 

In this paper, we have presented models for detecting planning within science inquiry 
learning. Our efforts to detect planning from data table usage have met with greater initial 
success than our attempts to detect planning within the hypothesis list, although both 
detectors are, we feel, good enough to use for some forms of instructional intervention. 
The detector for showing data table use (TablePlan) in planning can detect a student 
using the data table effectively from one not using the data table effectively for planning 
94% of the time. The  is respectable, so this detector can be used robustly to 
scaffold table use for planning during inquiry. If we detect that a student is not using the 
table effectively, we can suggest that the user look at the table and provide hints on how 
to compare one table row with another, and how to use this to plan the next trial. 
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On the other hand, the detector for using the hypotheses table for planning (HypPlan) did 
not perform as well. Although it had a very good A’ (.93 and .97), the  was low, 
meaning that if we used this detector for scaffolding, we will need to do it in a fail-soft 
manner. There is reason to believe this approach may be successful. For example, an 
early detector of gaming the system [7] with a similar and lower A’ was found to be 
effective for improving gaming students’ learning when used in a fail-soft manner. In 
addition, combining the HypPlan detector with another (for example, one that detects 
control for variables strategy or CVS) may compensate for its low  So for example, if a 
detector indicated that CVS was not being used, this detector also can be used to decide if 
scaffolding should include a hint regarding how the student should use the hypothesis 
table in order to reflect on their work. In this fashion, interventions based on this detector 
will only be given when there is additional reason to believe that intervention is needed. 

Future work will include improving our for HypPlan and finding other meta-cognitive 
tasks that can be detected effectively. This would require an expansion of the tags we 
used and perhaps a way to track student progress from one problem to another, since 
lesson-wide attributes may be useful for measuring students’ progress.  

By detecting planning in real time, rich adaptive scaffolding becomes feasible [13, 14]. In 
addition, with helping students learn both content and inquiry skills, scaffolding for 
planning can help them become better learners, possibly by influencing their meta-
cognitive skill development [1, 23]. This study makes an important contribution towards 
linking these two areas of research, namely, meta-cognitive skills and planning during 
scientific inquiry. 
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