
Identifying Students’ Inquiry Planning
Using Machine Learning

Orlando Montalvo2, Ryan S.J.d. Baker2,1, Michael A. Sao Pedro 1,
Adam Nakama2, and Janice D. Gobert2,1

{amontalvo, rsbaker, mikesp, nakama, jgobert}@wpi.edu
1Computer Science Department, Worcester Polytechnic Institute

2Social Science and Policy Studies Department, Worcester Polytechnic Institute

Abstract. This research investigates the detection of student meta-cognitive
planning processes in real-time using log tracing techniques. We use fine and
coarse-grained data distillation, in combination with coarse-grained text replay
coding, in order to develop detectors for students’ planning of experiments in
Science Assistments, an assessment and tutoring system for scientific inquiry.
The goal is to recognize student inquiry planning behavior in real-time as the
student conducts inquiry in a micro-world; the eventual goal is to provide real-
time scaffolding of scientific inquiry.

1 Introduction

Self-regulation is recognized as a highly important aspect of learning [3, 12, 25]. Self-
regulation includes planning, meta-cognitive monitoring, reflection, and checking
outcomes. While several studies on self-regulation within computer-based learning
environments have been conducted [15, 18, 23, 27], there is no consensus about how to
automatically measure self-regulation [3, 23]. Furthermore, very few studies have
addressed planning within the context of scientific inquiry. Some research has shown that
deliberate scaffolding of self-regulation leads to better learning in science [22], but it is
difficult to figure out what to measure [15]. Our study seeks to demonstrate a method for
detecting one aspect of self-regulation, students’ planning in the context of scientific
inquiry. Planning is one of the inquiry skills outlined by the National Science Education
Standards [21]. Since inquiry problems require several meta-cognitive processes, one of
which is planning [11], detecting students’ inquiry strategies and skills, including
planning, is a critical first step in order to provide students with support in the form of
computer-based adaptive scaffolding during real time inquiry [13, 14]. This study brings
together research on self-regulation and planning during scientific inquiry.

In this paper, we present a machine-learned model that detects student planning by
tracing time spent looking at data tables and hypothesis lists within our inquiry-based
learning environment, Science Assistments (http://users.wpi.edu/~sci_assistments; [13,
14]) and microworld for Phase Change. Planning is required especially when applying
the control for variables strategy (CVS), a key cognitive strategy within the domain [10],
but also in deciding what experiments are needed. We leverage from the success of [6], in
using text replays [4] to provide training instances for machine-learned detectors of
gaming the system within intelligent tutors. Specifically, by manually inspecting and
coding a proportion of the student inquiry sequences using text replay tagging of log
files, we extended this approach in order to develop detectors that determine whether a
student is planning by viewing data from their previous trials and/or their hypotheses.
Our text replay coding approach differs from previous text replays in two ways. First,
whereas text replays allow for the classification of a replay clip as a single category (out

141

http://users.wpi.edu/~sci_assistments

of a set of categories), text replay tagging allows multiple tags to be associated with one
clip. For example, a clip may be coded as using the data table for planning, using the
hypothesis table for planning, both, or neither. Second, the behaviors we are studying are
temporally more coarse-grained than in [6], displaying the entire sequence of
experimental trials for part of a hypothesis rather than specific trials. In addition to this
coding, we summarized each clip by creating a feature set from the action data. In
accordance with our coding, we consider problem-level features of the student data rather
than step or transaction-level data, unlike in many prior EDM models of student behavior
(e.g. [2, 8, 9, 24, 26]). Using the coding and the feature set, we created detectors for
planning.

2 Learning Environment

Our phase change environment (Figure 1), hosted by the Science Assistments [13, 14],
enabled students to engage in authentic inquiry using a microworld and inquiry support
tools. Each problem in our learning environment required students to conduct
experiments to determine if a particular independent variable, e.g., container size,
affected various outcomes like the melting point or boiling point of a substance.

Figure 1. Hypothesizing widget (left) and data collection panel (right) for the phase change microworld.

We scaffold students’ inquiry processes by organizing these tasks into different inquiry
stages, namely, “observe”, “hypothesize”, “experiment”, and “analyze data”. Students
start in the hypothesizing stage and move between stages in a suggested order but can
navigate back and forth between some of the inquiry phases. For example, from the
“analysis” stage students can collect more data by returning to the “experiment” stage,
they can create new hypotheses by returning to the “hypothesize” stage (starting a new
inquiry loop), or can submit their final experimentation procedures and analyses and
begin the next problem. While in the hypothesizing stage, they can either explore the
microworld or begin collecting data in the experiment phase. Finally, within the
experiment phase, students can only move to the analysis phase.

142

This learning environment has a moderate degree of learner control, less than in purely
exploratory learning environments [2], but more than in model-tracing tutors [17] or
constraint-based tutors [20]. Though our scaffolding restricts when students can switch
inquiry phases, there is enough freedom such that students can approach these inquiry
tasks in many ways, e.g., while experimenting, students could set up and run as many
different experiments as they desired.

In the Hypothesis stage, the student is prompted to build a hypothesis using drop down
boxes (Hypothesis Builder). The fields are: independent variable, change to the
independent variable, dependent variable, and change to dependent variable. So, for
example, the student can change the first [Choose One…] box to “amount of ice”, which
enables the next box. Proceeding, the student can create the hypothesis “If I change the
[amount of ice] so that it [increases], the [melting point][doesn’t change].

When students reach the experimentation stage, they can then change independent
variables, such as Level of Heat, and see the results within the microworld by running a
trial (by clicking on Run). They can also view representations of their full set of
hypotheses (by clicking on Show hypotheses list) and they can view the trial run data
(clicking on Show Table). Both the data table and the hypothesis list provide external
memory aid, allowing the student use information about previous decisions to reflect and
plan new experimental trials.

As students solve these inquiry problems, they could engage in a number of behavior
patterns. Particular to collecting data, systematic [24] students collect data that test their
hypotheses by designing and running controlled experiments. Additionally, such students
may use the table tool and hypothesis list to reflect upon their results and plan for
additional experiments they may need to run. Students who are unsystematic in their
experimental design and collection of data may exhibit haphazard behaviors such as:
constructing experiments that do not test their hypotheses, not collecting enough data to
support their hypotheses, not using CVS, or running the same experimental setup
multiple times [17].

3 Data Set

Participants were 148 eighth grade students, ranging in age from 12-14 years, from a
public middle school in Central Massachusetts. These students used the phase change
microworld. Students engaged in authentic inquiry problems using the phase change and
density microworlds within the Science Assistments learning environment. As part of the
phase change activities, students attempted to complete four tasks using our interactive
tools.

Each of these students completed at least one data collection activity in the phase change
environment (two other students did not use the microworld, and were excluded from
analysis). As students solved these tasks, we recorded fine-grained actions within the
inquiry support tools and microworlds. The set of actions logged included creating
hypotheses, setting up experiments, showing or hiding support tools, running
experiments, creating interpretations of data, and transitioning between inquiry activities

143

(i.e., moving from hypothesizing to data collection). Each action’s type, current and
previous values (where applicable – for instance, a variable’s value), and timestamp were
recorded. In all, 27,257 student actions for phase change were logged. These served as
the basis for generating text replay clips consisting of contiguous sequences of actions
specific to experimenting.

4 Method

The data used for this study was collected by Science Assistments, which logs every
widget action performed by the student including button clicks, checkbox choices, etc.
Each action has a time stamp, student/problem identifiers, and widget information, and is
tagged as to its step (step tag) in the inquiry process. The step tags are a level above a
simple action (this is captured by the widget information), representing a step within the
inquiry process, across microworlds. This allows us to analyze similar actions across
microworlds. These step tags are used for two purposes: as markers to create clips for text
replay coding and to categorize data for fine-grain feature extraction.

4.1 Text Replay Coding

Text replay hand coding presented our team with two significant challenges: specific
codes and grain size. In designing our text replays, it was necessary to use a coarser
grain-size than in prior versions of this method [4]. In particular, it is necessary to show
significant periods of experimentation in order to put usage of the table and hypothesis
list into context, while limiting clip size to reduce memory load. We decided to use clips
that include both the hypothesis and the experiment stages, which is long enough to see
context, but short enough to tractably code. Another important issue in grain-size
selection is that trial run data from one hypothesis test can be used in another to make
inferences about the hypothesis at hand (for instance, by comparing a current trial to one
conducted earlier). To compensate for this, we code using both the actions in testing the
current hypothesis, and cumulative measures which include actions performed when
testing previous hypotheses.

 Figure 2 - Clip showing a single Hypothesis-Experiment run (clips may be significantly longer)

To support coding in this fashion, a new tool for text replay tagging was developed in
Ruby, shown in Figure 2. The start of the clip is triggered by a hypothesis variable
change after the beginning of a new problem. The tool displays all student actions

144

(hypothesis and experiment) until the student transitions to the analysis stage. Subsequent
clips include previous clips and any single new cycle which includes the Hypothesis and
Experiment stage. A clip could be tagged with one of 10 tags: “Never Change Variables”,
“Repeat Trials”, “Non-Interpretable Action Sequence”, “Indecisiveness”, “Used CVS”,
“Tested Hypothesis”, “Used Table to Plan”, “Used Hypothesis Viewer to Plan”, “No
Activity”, and “Bad Data.” Specific to our study, we tagged a clip as “Used Table to
Plan” (TablePlan) if the clip contained actions indicative that the student viewed the trial
run data table in a way consistent with planning for subsequent trials. “Used Hypothesis
Viewer to Plan” (HypPlan) was chosen if the clip had actions indicating that the student
viewed the hypotheses list in a way consistent with planning for subsequent trials.

4.2 Coding Agreement

Two coders (the third and fourth authors) tagged the data collection clips using at least
one of the ten tags. To ensure that a representative range of student clips were coded, we
stratified our sample of the clips on condition, student, problem, and within-problem clip
order (e.g. first clip, second clip, etc.). The corpus of hand-coded clips contained exactly
one randomly selected clip from each problem each student encountered, resulting in 581
clips. Each coder tagged the first 50 clips; the remaining clips were split between the
coders. Of the 50 clips tagged, 7 were discarded because of a problem with an early
version of the text replay tool where the problem number of the code did not match the
problem number of the microworld.

For the 43 clips tagged by each coder, there was high overall tagging agreement, average
 = 0.86. Of particular relevance to this study, there was strikingly high agreement on the
TablePlan,  and of HypPlan, also Kappa at this level suggests particularly
good agreement between coders, which was achieved in part through extensive
discussion and joint labeling prior to the inter-rater reliability session. In particular, the
coders found these two categories easy to code, as students either tended to spend
significant amounts of time reflecting on these tools, or viewed them extremely briefly
(or not at all). These categories were also relatively rare, potentially increasing  by
chance; only 8% of clips involved TablePlan and only 4% of clips involved HypPlan.

4.3 Feature Distillation

Features extracted can be grouped into 10 categories: all actions, total trial runs,
incomplete trial runs, complete trial runs, pauses, data table display, hypothesis list
display, field changes in Hypothesis Builder, hypothesis made, and microworld variable
changes. For each of these categories we traced the number of times the action and the
time taken for each action. Two other categories were included indirectly related to
actions: the number trials where only one independent variable was different between the
two trials and the number of times a trial was repeated. These last two had no times
associated with them.

The microworld activity was divided into tasks in which the focus was a specific
independent variable. Since there were four independent variables, there were four tasks.
Within a task, the student is allowed to make and test several hypotheses. For each of the

145

12 categories above, we extracted data for each hypothesis the student worked on (non-
cumulative data), and across all hypotheses in the task (cumulative data). The reason for
this is that within each task, the data table accumulates the trial run data across
hypotheses. This allows the students to compare trial runs testing previous hypotheses
with the runs made in the current hypothesis.

Lastly, the time data was distilled to obtain the following values: minimum, maximum,
standard deviation, mean and mode. It is these values plus the count which was used in
the machine learning model. This data was arranged in a comma-delimited flat file
suitable for input into RapidMiner. The data was divided into files, one for each coded
feature. The coded feature being the first item on the line, followed by the distilled
features described above.

4.4 Machine Learning Algorithms

Machine-learned detectors of the two behavioral patterns were developed within
RapidMiner 4.6 [19] using the default settings. Detectors were built using J48 decision
trees, with automated pruning to control for over-fitting, the same technique used in [26]
and [6]. Six-fold cross-validation was conducted at the student level (e.g. detectors are
trained on five groups of students and tested on a sixth group of students). By cross-
validating at this level, we increase confidence that detectors will be accurate for new
groups of students. We assessed the classifiers using two metrics. First, we used A’ [16].
A' is the probability that if the detector is comparing two clips, one involving the
category of interest (TablePlan or HypPlan) and one not involving that category, it will
correctly identify which clip is which. A' is equivalent to both the area under the ROC
curve in signal detection theory, and to W, the Wilcoxon statistic [16]. A model with an
A' of 0.5 performs at chance, and a model with an A' of 1.0 performs perfectly. In these
analyses, A’ was used at the level of clips, rather than students. Statistical tests for A’ are
not presented in this paper. The most appropriate statistical test for A’ in data across
students is to calculate A’ and standard error for each student for each model, compare
using Z tests, and then aggregate across students using Stouffer’s method [5] – however,
the standard error formula for A’ [16] requires multiple examples from each category for
each student, which is infeasible in the small samples obtained for each student in our
text replay tagging. Another possible method, ignoring student-level differences to
increase example counts, biases undesirably in favor of statistical significance.

Second, we used Kappa (), which assesses whether the detector identifies is better than
chance at identifying the correct action sequences as involving the category of interest. A
Kappa of 0 indicates that the detector performs at chance, and a Kappa of 1 indicates that
the detector performs perfectly. As Kappa looks only at the final label, whereas A’ looks
at the classifier’s degree of confidence, A’ can be more sensitive to uncertainty in
classification than Kappa.

5 Results

We constructed and tested detectors using our corpus of hand-coded clips. TablePlan and
HypPlan detectors were constructed from a combination of the subset of the first 43 clips

146

that the two coders agreed on, the remaining clips, tagged separately by the two coders.
In total, 570 tagged clips were used for each detector. Of these clips, 47 out of 570 were
tagged with TablePlan (8%) and 20 out of 570 (4%) were tagged with HypPlan.

Table 1. Best results for detectors of each coding category

Category A’  Attribute type % students
in data

HypPlan .93 .14 Non-cumulative 8%

TablePlan .94 .46 Cumulative 4%

Detectors were generated for each behavior using J48 decision trees and two sets of
attributes, cumulative and non-cumulative attributes. Thus, four different detectors were
constructed two for TablePlan and two for HypPlan. The TablePlan detector using
cumulative attributes (A’ = .94,  = .46) performed slightly better than the detector built
with non-cumulative attributes (A’ = .96,  = .36). Both versions of the detector achieved
excellent performance, comparable to detectors of gaming the system refined over several
years (e.g., Baker & de Carvalho, 2008), and are very likely to be appropriate for use in
interventions. The HypPlan detectors did not perform as well, achieving A’ = 0.93,  =
0.14 for the non-cumulative attributes and A’=.97,  = 0.02 for the cumulative attributes.
The substantial difference between A’ and is unusual. It appears that what happened in
this case is that the model, on cross-validation, classified many clips incorrectly with low
confidence; in other words, A’ by considering pair-wise comparisons catches the overall
rank-ordered correctness of the detector across confidence values even though many clips
were mis-categorized at the specific threshold chosen by the algorithm. One possibility is
that the low number of HypPlan labels in the data set made the detectors more prone to
over-fitting. This result suggests that the HypPlan detector is probably acceptable for fail-
soft interventions, where students assessed with low confidence (in either direction) can
receive interventions that are not costly if mis-applied.

6 Discussion and Conclusions

In this paper, we have presented models for detecting planning within science inquiry
learning. Our efforts to detect planning from data table usage have met with greater initial
success than our attempts to detect planning within the hypothesis list, although both
detectors are, we feel, good enough to use for some forms of instructional intervention.
The detector for showing data table use (TablePlan) in planning can detect a student
using the data table effectively from one not using the data table effectively for planning
94% of the time. The  is respectable, so this detector can be used robustly to
scaffold table use for planning during inquiry. If we detect that a student is not using the
table effectively, we can suggest that the user look at the table and provide hints on how
to compare one table row with another, and how to use this to plan the next trial.

147

On the other hand, the detector for using the hypotheses table for planning (HypPlan) did
not perform as well. Although it had a very good A’ (.93 and .97), the  was low,
meaning that if we used this detector for scaffolding, we will need to do it in a fail-soft
manner. There is reason to believe this approach may be successful. For example, an
early detector of gaming the system [7] with a similar and lower A’ was found to be
effective for improving gaming students’ learning when used in a fail-soft manner. In
addition, combining the HypPlan detector with another (for example, one that detects
control for variables strategy or CVS) may compensate for its low  So for example, if a
detector indicated that CVS was not being used, this detector also can be used to decide if
scaffolding should include a hint regarding how the student should use the hypothesis
table in order to reflect on their work. In this fashion, interventions based on this detector
will only be given when there is additional reason to believe that intervention is needed.

Future work will include improving our for HypPlan and finding other meta-cognitive
tasks that can be detected effectively. This would require an expansion of the tags we
used and perhaps a way to track student progress from one problem to another, since
lesson-wide attributes may be useful for measuring students’ progress.

By detecting planning in real time, rich adaptive scaffolding becomes feasible [13, 14]. In
addition, with helping students learn both content and inquiry skills, scaffolding for
planning can help them become better learners, possibly by influencing their meta-
cognitive skill development [1, 23]. This study makes an important contribution towards
linking these two areas of research, namely, meta-cognitive skills and planning during
scientific inquiry.

Acknowledgements

This research is funded by the National Science Foundation (NSF-DRL#0733286), Janice
Gobert, Principal Investigator, Neil Heffernan, Ryan Baker, and Carolina Ruiz, Co-
Principal Investigators, and the U.S. Department of Education (R305A090170), Janice
Gobert, Principal Investigator, Neil Heffernan, Ken Koedinger, and Joe Beck, Co-
Principal Investigators. Any opinions expressed are those of the authors and do not
necessarily reflect those of the funding agencies.

References

[1] Aleven, V., McLaren, B., Roll, I., Koedinger, K.: Toward Meta-cognitive Tutoring: A
Model of Help Seeking with a Cognitive Tutor. International Journal of Artificial
Integlligence in Education 16(2), p. 101-128, 2006

[2] Amershi, S., Conati, C. Combining Unsupervised and Supervised Machine Learning
to Build User Models for Exploratory Learning Environments. Journal of Educational

Data Mining, 2009, 1(1), p. 71-81.

[3] Azevedo, R.: Theoretical, conceptual, methodological, and instructional issues in
research on metacogntion and self-regulated learning: A discussion. Metacognition
Learning 4(1), p. 87-95, 2009

148

[4] Baker, R. S. J. d., Corbett, A. T., Wagner, A. Z. Human Classification of Low-
Fidelity Replays of Student Actions. Proceedings of the Educational Data Mining

Workshop at the 8th International Conference on Intelligent Tutoring Systems, 2006. p.
29-36.

[5] Baker, R. S. J. d., Corbett, A. T., Aleven, V. Improving Contextual Models of
Guessing and Slipping with a Truncated Training Set. Proceedings of the 1st

International Conference on Educational Data Mining, 2008. p. 67-76.

[6] Baker, R. S. J. d., de Carvalho, A. M. J. A. Labeling Student Behavior Faster and
More Precisely with Text Replays. Proceedings of the 1st International Conference on

Educational Data Mining. p. 38-47.

[7] Baker, R.S.J.d., Corbett, A.T., Koedinger, K.R., Evenson, E., Roll, I., Wagner, A.Z.,
Naim, M., Raspat, J., Baker, D.J., Beck, J. (2006) Adapting to When Students Game an
Intelligent Tutoring System. Proceedings of the 8th International Conference on

Intelligent Tutoring Systems, 392-401.[8] Beck, J. Engagement tracing: using response
times to model student disengagement. Proceedings of the 12th International Conference

on Artificial Intelligence, 2005. p. 88-95.

[9] Cetinas, S., Si, L., Xin, Y. P., Hord, C. Automatic Detection of Off-Task Behaviors in
Intelligent Tutoring Systems with Machine Learning Techniques. IEEE Transactions on

Learning Technologies, in press.

[10] Chen, Z., Klahr, D.: All Other Things Being Equal: Acquisition and Transfer of the
Control of Variables Strategy. Child Development, 70(5), 1098-1120 (1999)

[11] de Jong, T. Computer simulations - Technological advances in inquiry learning.
Science, 312, 2006, , p. 532-533.

[12] Dignath, C., Buttner, G. Components of fostering self-regulated learning among
students: A meta-analysis on intervention studies at primary and secondary school level. ,
2008, 3, p. 231-264.

[13] Gobert, J., Heffernan, N., Baker, R., Ruiz, C.: AMI: ASSISTments Meets Inquiry
(NSF-DRL #0733286)., Awarded September 2007 from National Science Foundation

[14] Gobert, J., Heffernan, N., Koedinger, K., Beck, J.: ASSISTments Meets Science
Learing (AMSL; R305A090170)., Awarded February 2009 from the U.S. Dept. of
Education

 [15] Hadwin, A. F., Nesbit, J. C., Jamieson-Noel, D., Code, J., Winne, P. H.: The use of
computer-based environments for understanding and improving self-regulation.
Metacognition Learning 2, p. 107-124, 2007

[16] Hanley, J. A., McNeil, B. J. The Meaning and Use of the Area under a Receiver
Operating Characteristic (ROC) Curve. Radiology, vol. 143, 1982. p. 29-36.

149

[17] Koedinger, K. R., Corbett, A. T.: Cognitive Tutors: Technology bringing learning
sciences to the classroom. In (Ed.), R. K. (Eds.) The Cambridge handbook of the learning

sciences, 2006.: Cambridge University Press. p. 61-77.

[18] Manlove, S., Lazonder, A. W., Dejong, T.: Software scoffolds to promote regulation
during scientific inquiry learning. Metacognition Learning 2, p. 141-155, 2007

[19] Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T. YALE: Rapid
Prototyping for Complex Data Mining Tasks. Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD 2006), 2006.
p. 935-940.

[20] Mitrovic, A., Mayo, M., Suraweera, P., Martin, B. Constraint-based tutors: a success
story. Springer-Verlag (Eds.) Proceedings of the Industrial & Engineering Application of

Artificial Intelligence & Expert Systems Conference IEA/AIE-2001, 2001. p. 931-940.

[21] NSES: National Committee on Science Education Standards and Assessment.
(1996)., National Science Education Standards, Washington, D.C., National Academy
Press, 1996

[22] Roll, I., Aleven, V., McLaren, B., Koedinger, K.: Designing for metacognition--
applying cognitive tutor principles to the tutoring of help seeking. Metacognition
Learning 2, p. 125-140, 2007

[23] Schraw, G.: A conceptual analysis of five measures of metacognitive monitoring.
Metacognition Learning 4, p. 33-45, 2009[24] Shih, B., Koedinger, K., Scheines, R. A
Response Time Model for Bottom-Out Hints as Worked Examples. Proceedings of the

1st International Conference on Educational Data Mining, 2008. p. 117-126.

[25] Veenman, M. V. J., Van Hout-Worters, B. H. A. M., Afflerback, P.: Metacognition
and learning: conception and methodological considerations. Metacognition Learning 1,
p. 3-14, 2006

[26] Walonoski, J. A., Heffernan, N. T. Detection and Analysis of Off-Task Gaming
Behavior in Intelligent Tutoring Systems. Proceedings of the 8th International

Conference on Intelligent Tutoring Systems, 2006. p. 382-391.

[27] Winne, P. H., Nesbit, J. C., Kumar, V., Hadwin, A. F., Lajoie, S. P., Azevedo, R.,
Perry, N. E. Supporting Self-Regulated Learning with gStudy Software: The Learning Kit
Project. Tech., Inst., Cogntive Learning, 2006. p. 105-113.

150

