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Abstract.  We present machine-learned models that detect two forms of middle 
school students’ systematic data collection behavior, designing controlled 
experiments and testing the stated hypothesis, within a virtual phase change 
inquiry learning environment. To generate these models, we manually coded a 
proportion of the student activity sequence clips using “text replay tagging” of 
log files, an extension of the text replay method presented in Baker, Corbett & 
Wagner (2006). We found that feature sets based on cumulative attributes, 
attributes computed over all predecessor clips, yielded better detectors of CVS-
compliant and hypothesis-testing behavior than more local representations of 
student behavior. Furthermore, our detectors classify behaviors well enough to 
use them in our learning environment to determine which students require 
scaffolding on these skills. 

1 Introduction 

While inquiry learning is generally considered an important part of science education at 
all levels, many students lack inquiry skills [14]. Students have difficulties focusing on 
relevant variables, stating testable hypotheses, drawing correct conclusions from 
experiments, and linking hypotheses and data. They also struggle with basic experimental 
processes such as designing effective experiments, translating theoretical variables from 
their hypotheses into manipulable variables, and adequately monitoring their progress 
[10]. To that end, we are developing a learning environment, Science Assistments 
(http://users.wpi.edu/~sci_assistments), with the goal of assessing and scaffolding 
students’ scientific inquiry as they engage in inquiry using interactive microworlds [13]. 
We place special emphasis on students’ development of skills for conducting experiments 
since it has been argued that learning to correctly plan and execute controlled 
experiments is necessary to the development of other scientific inquiry skills [13]. In 
order to properly identify students needing inquiry support, we must be able to 
distinguish students who exhibit appropriate systematic behaviors from those who do not. 

In this paper, we present machine-learned models for detecting two forms of systematic 
data collection behavior exhibited as students conduct experiments in a phase change 
microworld. The first behavior we detected was designing controlled experiments using 
the Control of Variables Strategy (CVS) [9], a strategy stating that one should change 
only the variable to be tested, the target variable, while keeping all extraneous variables 
constant to test the effects of that variable on an outcome. The second was collecting data 
to test a stated hypothesis, as opposed to collecting data that does not pertain to the stated 
hypothesis. To train our behavior detectors we generated training instances by manually 
inspecting and coding a proportion of student activity sequences using “text replay 
tagging” of log files. Similar to a video replay or screen replay, a text replay [2] is a pre-
specified chunk of student actions presented in text that captures information such as 
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each action’s time, type, widget selection, and input selection. Our approach leverages 
the success of [4, 6] in using text replays to provide training instances for machine-
learned detectors of gaming the system within intelligent tutors. We are building 
detectors of these constructs, as opposed to detectors that identify specific kinds of 
unsystematic behavior, with the eventual goal of auto-scoring students’ systematicity. 
Despite the ill defined nature of science inquiry, we can tutor students’ inquiry skills with 
this approach, an approach similar to model tracing (cf. [16]). 

This approach differs from previous text replays in two ways. First, whereas text replays 
allow for the classification of a replay clip as a single category out of a set of categories, 
text replay tagging allows multiple tags to be associated with one clip. For example, a 
clip may be tagged as CVS-compliant, hypothesis testing-compliant, both, or neither. 
Second, the behaviors we are studying are temporally more coarse-grained than in [4] or 
[6], requiring the display of the entire sequence of work on part of a problem rather than 
specific attempts to answer a problem or problem step. This permits coders to obtain a 
more comprehensive view of students’ inquiry processes necessary for labeling processes 
like these that unfold over time. After producing these “gold standard” classifications, we 
summarized each student’s activity sequences by creating a feature set from the data and 
used classification methods to find models that predict the labels from the data. In 
accordance with our data, we considered problem-level features of the student data rather 
than step or transaction-level data, unlike in many prior EDM models of student behavior 
(e.g. [1, 4, 6, 8, 20]). 

Past research has attempted to model and analyze inquiry behavior using knowledge 
engineering approaches. In [7], the authors defined rules that encapsulated behaviors for 
differing levels of systematic experimentation skill when solving problems with 
interactive genetics simulations. They defined their rules over a set of domain-specific 
features extrapolated from student interactions, such as the types of genetic crosses made 
and if crosses were repeated, and domain-general features, such as time spent solving a 
problem. In [19], the authors constructed an ACT-R model based on an assessment of 
skill differences in novices and experts that designed and interpreted psychological 
experiments within a computerized environment. They developed a detailed set of rules 
and hierarchical high and low-level goals and actions to represent the cognitive processes 
of how an expert hypothesized, explored, analyzed and concluded about two competing 
theories. Finally, they tested the efficacy of their model by adding and removing key 
productions and comparing the model’s simulated performance to experts and novices. 
Like both these approaches, we use low-level student actions as a basis for creating our 
behavioral models and, particularly like [19], we are interested in quantifying how well 
our detectors predict behaviors. However, our approach is different in that it does not 
prescribe rules for systematicity; instead, given data, human classified labels, and a 
feature set, we use machine learning techniques to discover rules. This approach has 
several advantages. The resulting models capture relationships that humans cannot easily 
intuit. They also identify boundary conditions more precisely than knowledge 
engineering approaches. Finally, unlike knowledge engineering approaches, they are 
easier to verify, since cross-validation is possible. 
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2 Learning Environment

Our phase change environment 
students to engage in authentic inquiry using a 
Each problem in our learning 
to determine if a particular independent
outcomes like the melting point or boiling point of a substance.
students demonstrated proficiency
tables and graphs, analyzing 
variable affected the outcomes
arranging these tasks into different 
“experiment”, and “analyze data”. 
between phases in a suggested order but can navigate back and forth between some of the 
inquiry phases. For example, from the “analysis” panel students could collect more data 
by returning to the “experiment” 
to the “hypothesize” phase (starting a new inquiry loop), or could 
experimentation procedures and analyses and begin the next problem. While in the 
hypothesizing phase (left side of Figure 1), they could either expl
begin collecting data in the experiment 
experiment phase, students can 

This learning environment has a moderate degree of learner control, less than 
exploratory learning environments
or constraint-based tutors [18]

Figure 1. Hypothesizing widget (left) and data collection panel (right) for the phase change microworld.

Learning Environment 

environment (Figure 1), hosted by Science Assistments [13]
authentic inquiry using a microworld and inquiry support tools.
learning environment required students to conduct full experiments 

independent variable, e.g., container size, affected various 
outcomes like the melting point or boiling point of a substance. For a given variable, 

proficiency by hypothesizing, collecting data, reasoning with 
 data, and communicating their findings about how that 

variable affected the outcomes. We helped organize students’ inquiry process
different inquiry phases: “observe”, “hypothesize”, 

“experiment”, and “analyze data”. Students start in the hypothesizing phase and move 
between phases in a suggested order but can navigate back and forth between some of the 
inquiry phases. For example, from the “analysis” panel students could collect more data 
by returning to the “experiment” phases, they could create new hypotheses by returning 

(starting a new inquiry loop), or could submit their final
experimentation procedures and analyses and begin the next problem. While in the 

(left side of Figure 1), they could either explore the microworld or 
begin collecting data in the experiment phase (right side of Figure 1). Finally, within the 

, students can only move to the analysis phase. 

This learning environment has a moderate degree of learner control, less than 
xploratory learning environments [1], but more than in classic model-tracing tutors 

[18]. Though our scaffolding restricts when students can switch 

. Hypothesizing widget (left) and data collection panel (right) for the phase change microworld.
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inquiry phases, there is enough freedom such that students could approach these inquiry 
tasks in many ways. For example, a student could choose to specify only one hypothesis 
like, “If I change the container size so that increases, the melting point stays the same” 
(left side of Figure 1), and then test that single hypothesis. Alternately, they could 
generate several and test them all sequentially. While experimenting (right side of Figure 
1), a student could set up and run as many different experiments as they desired, 
including repeating the same trial multiple times. A table tool was provided within the 
learning environment to display the results of the student’s previous experiments and to 
display their hypothesis list to determine which experiments to run next.  

As students engage in inquiry using our tools and microworld, they can exhibit several 
different inquiry behaviors. Students acting in a systematic manner [7] collect data by 
designing and running controlled experiments that test their hypotheses. Also, students 
acting systematically use the table tool and hypothesis viewer in order to reflect and plan 
for additional experiments. Students who are unsystematic, by contrast, may exhibit 
haphazard behaviors such as: constructing experiments that do not test their hypotheses, 
not collecting enough data to support or refute their hypotheses, not following CVS, 
running the same experimental setup multiple times, or failing to use the inquiry support 
tools to analyze their results and plan additional trials [10]. 

3 Dataset 

Participants were 148 eighth grade students, ranging in age from 12-14 years, from a 
public middle school in Central Massachusetts. These students used the phase change 
microworld as part of a broader study to determine if inquiry skills learned in one domain 
will transfer to inquiry skill in other domains [13]. Students engaged in authentic inquiry 
problems using the phase change and density microworlds within the Science 
Assistments learning environment.  Students were randomly assigned to one of two 
conditions that counterbalanced the order in which students engaged in a science domain: 
phase change followed by density vs. density followed by phase change. In this paper, we 
discuss detectors of systematic data collection for student actions within the phase change 
microworld only, as the version of the density microworld used lacked the hypothesizing 
scaffold used in the phase change microworld. In building these detectors, we look 
specifically at what students did in the “hypothesizing” and “experimenting” phases of 
inquiry. As part of the phase change activities, students attempted to complete four tasks 
using our interactive tools. 

Each of these students completed at least one data collection activity in the phase change 
environment (two other students did not use the microworld, and were excluded from 
analysis). As students solved these tasks, we recorded fine-grained actions within the 
inquiry support tools and microworlds. The set of actions logged included creating 
hypotheses, setting up experiments, showing or hiding support tools, running 
experiments, creating interpretations of data, and transitioning between inquiry activities 
(i.e. moving from hypothesizing to data collection). Each action’s type, current and 
previous values (where applicable – for instance, a variable’s value), and timestamp were 
recorded. In all, 27,257 student actions for phase change were logged. These served as 
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the basis for generating text replay clips consisting of contiguous sequences of actions 
specific to experimenting. 

4 Text Replay Tagging Methodology 

In designing our text replays, it was necessary to use a coarser grain-size than in prior 
versions of this method (e.g. [4, 6]).  In particular, it was necessary to show significant 
periods of experimentation so that coders could precisely evaluate experimentation 
behavior relative to stated hypotheses. We decided our text replays should include actions 
from only the hypothesis and the experimenting phases. Another important issue was that 
trial run data from one hypothesis test could be used in another hypothesis test to make 
inferences about the hypothesis at hand (i.e. comparing a current trial to one conducted 
earlier). To compensate for this, we code using both the actions in testing the current 
hypothesis, and cumulative measures that include actions performed when testing 
previous hypotheses.  Hence, each tagged clip focuses on actions in the current part of the 
inquiry process, but may take into account the context of the cumulative section. 

 

Figure 2. Text Replay Tagging Tool with an example student’s clip coded as running repeated trials, 
following CVS, and testing stated hypotheses. 

To support coding in this fashion, a new tool for text replay tagging was developed in 
Ruby, shown in Figure 2. The start of the clip is triggered by a hypothesis variable 
change after the beginning of a new problem.  The tool displays all student actions 
(hypothesis and experiment) until the student transitions to the analysis stage.  
Subsequent clips include previous clips and any single new cycle which includes the 
Hypothesis and Experiment stage. A clip could be tagged with one of 9 tags 
corresponding to data collection behaviors: “Never Change Variables”, “Repeat Trials”, 
“Non-Interpretable Action Sequence”, “Indecisiveness”, “Used CVS”, “Tested 
Hypothesis”, “Used Table to Plan”, “Used Hypothesis Viewer to Plan”, “No Activity”, 

185



 

 

and one extra category for unclassifiable clips, “Bad Data”, for a total of 10 coding 
categories. Specifically for the analyses in this paper, we tagged a clip as “Used CVS” if 
the clip contained actions indicative of designing and running controlled experiments. 
“Tested Hypothesis” was chosen if the clip had actions indicating attempts to test the 
stated hypotheses, regardless of whether or not proper CVS procedure was used. 

4.1 Clip Tagging Procedure 

Two coders (the first and fourth authors) tagged the data collection clips using at least 
one of the ten tags. To ensure that a representative range of student clips were coded, we 
stratified our sample of the clips on condition, student, problem, and within-problem clip 
order (e.g. first clip, second clip, etc.) The corpus of hand-coded clips contained exactly 
one randomly selected clip from each problem each student encountered, resulting in 571 
clips. Each coder tagged the first 50 clips; the remaining clips were split between the 
coders. For the 50 clips tagged by each coder, there was high overall tagging agreement, 
average κ=0.86. Of particular relevance to this study, there was also better agreement on 
the CVS and testing hypotheses tags, κ=.69 and κ=1.00 respectively, than has been seen 
for previous text replay approaches that led to successful behavior detectors (e.g. [4, 6]). 

4.2 Feature Distillation 

Features were extracted relevant to the 10 categories of behavior within the microworld. 
These included: all actions, total trial runs, incomplete trial runs, complete trial runs, 
pauses, data table display, hypothesis list display, field changes in hypothesis builder (left 
side of Figure 1), hypotheses made, and microworld variable changes. For each category, 
we traced the number of times the action occurred and the time taken for each action. For 
timing values, we also computed the minimum, maximum, standard deviation, mean and 
mode for each student and compared these values relative to all other students. We also 
included the number of pairwise trials where only one independent variable differed 
between them and a count for repeated trials, trials with the same independent variable 
selections. These last two had no time associated with them. 

We extracted feature values from student actions as follows. As stated in Section 2, 
student microworld activity was divided into tasks, each focusing on a specific 
independent variable. Also, within a task, the student could make and test several 
hypotheses.  For each of the categories, we extracted data for each hypothesis the student 
tested (local data), and across all hypotheses in the set (cumulative data). We did this 
because within each set, the data table accumulated the trial run data across hypotheses, 
enabling students to compare trial runs testing previous hypotheses with the runs made in 
the current hypothesis. 

4.3 Machine Learning Algorithms 

Machine-learned detectors of the two behavioral patterns of interest, CVS and hypothesis 
testing, were developed within RapidMiner 4.6 [17]. Detectors were built using J48 
decision trees, with automated pruning to control for over-fitting, the same technique 
used in [4, 20]. Before running the decision tree algorithm, we filtered redundant features 
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correlated at or above 0.6. Six-fold cross-validation was conducted at the student level 
(e.g. detectors are trained on five groups of students and tested on a sixth group of 
students). By cross-validating at this level, we increase confidence that detectors will be 
accurate for new groups of students. We assessed the classifiers using two metrics. First, 
we used A’ [15]. A' is the probability that if the detector is comparing two clips, one 
involving the category of interest (CVS or Hypothesis Testing) and one not involving that 
category, it will correctly identify which clip is which. A' is equivalent to both the area 
under the ROC curve in signal detection theory, and to W, the Wilcoxon statistic [15]. A 
model with an A' of 0.5 performs at chance, and a model with an A' of 1.0 performs 
perfectly. In these analyses, A’ was used at the level of clips, rather than students. 
Statistical tests for A’ are not presented in this paper. The most appropriate statistical test 
for A’ in data across students is to calculate A’ and standard error for each student for 
each model, compare using Z tests, and then aggregate across students using Stouffer’s 
method (cf. [3]) – however, the standard error formula for A’ [15] requires multiple 
examples from each category for each student, which is infeasible in the small samples 
obtained for each student in our text replay tagging. Another possible method, ignoring 
student-level differences to increase example counts, biases undesirably in favor of 
statistical significance. 

Second, we used Kappa (κ), which assesses whether the detector identifies is better than 
chance at identifying the correct action sequences as involving the category of interest. A 
Kappa of 0 indicates that the detector performs at chance, and a Kappa of 1 indicates that 
the detector performs perfectly. As Kappa looks only at the final label, whereas A’ looks 
at the classifier’s degree of confidence, A’ can be more sensitive to uncertainty in 
classification than Kappa.  

5 Results 

We constructed and tested detectors using our corpus of hand-coded clips. The CVS and 
hypothesis testing detectors were constructed from a combination of the subset of the first 
50 clips that the two coders agreed on, and the remaining clips, tagged separately by the 
two coders. Of all clips, 31.2% were tagged as showing evidence of CVS and 34.4% 
were tagged as showing evidence of collecting data to test specified hypotheses. 

Detectors were generated for each behavior using J48 decision trees and two sets of 
attributes, cumulative and non-cumulative attributes. As a reminder, non-cumulative 
attributes were tallied over a single clip, irrespective of other clips, whereas cumulative 
attributes included data from earlier clips from the same problem. Thus, four different 
detectors were constructed. The CVS detector using cumulative attributes (A’=.85, 
κ=.47) appeared to perform better than the detector built with non-cumulative attributes 
(A’=.81, κ=.42). Likewise, the hypothesis testing detector built with cumulative attributes 
(A’=.86, κ=.46) scored higher on our metrics than the non-cumulative detector (A’=.84, 
κ=.44). We believe the detectors built from cumulative attributes perform better because 
students may perform actions within particular clips that, when taken in conjunction with 
actions from previous clips, represent a more complete picture of student behavior. For 
example, while analyzing results a student may realize they need to run one more 
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experiment to correctly test their hypothesis (which would start a new clip). The human 
coders would correctly label this as CVS and testing a hypothesis in reference to the 
previous context, but values for noncumulative attributes would most likely indicate that 
the student was not systematic because these attributes’ values are not computed based on 
previous clips. 

6 Discussion and Conclusions 

The goal of this research was to develop machine-learned models that can automatically 
detect if a student is systematic in their inquiry, particularly in their data collection 
actions, using text replay tagging. This work showed that combining text replay clip 
tagging of low-level student actions and machine learning can lead to the successful 
development of behavior detectors in an ill-defined domain such as scientific 
experimentation. This work also presents a contribution to the text replay process since it 
is more efficient to code a clip with multiple tags. Our results were promising; using 
cumulative attributes, we can distinguish students who are successfully applying the 
Control of Variables Strategy (CVS) in the phase change environment from students not 
applying CVS 85% of the time and can distinguish students testing their hypotheses 86% 
of the time. Furthermore, the Kappa values indicate that each of these detectors are 
substantially better than chance. In other words, though these detectors are not perfect, 
they can be used to select students for scaffolding. Since they are not perfect, some 
students may receive help when they do not need it and vice versa. Hence, interventions 
used should be fail-soft, relatively non-harmful when given incorrectly. As such, we aim 
to use these detectors to determine which students will receive scaffolding. 

An important area of future work will be to improve our detectors’ A’ and Kappa. To this 
end, we plan to add lesson-wide attributes, learner attributes, and data on the other tags 
used to critique a clip. Lesson-wide attributes, such as task attempt number, that can 
benchmark a students’ experience within our environment may aid in predicting 
systematicity, in coordination with other features. Additionally, rather than treating 
learner characteristics, such as prior knowledge, as external predictors of systematicity, 
we could incorporate those measurements into the detectors themselves. Similar to 
computing average attribute differences between clips (i.e. computing the difference in 
number of trials run for the given clip and the average number of trials run for all clips), 
we could compute differences between students with similar learner characteristics. 
Similarly, rather than using systematicity to predict content knowledge, we could 
incorporate student prior knowledge of content and inquiry using our standardized-test 
style questions [13]. Another important area of future work will be to generalize and train 
our detectors across different microworlds (cf. [5]) to increase their applicability across 
middle school science learning. 

This approach also enables us to research the interactions between content knowledge 
and authentic inquiry performance within our learning environments. Being able to 
classify students as systematic according to different skills, e.g. testing hypotheses and 
CVS, will enable us to determine if skill proficiency in solving authentic inquiry 
problems will predict skill proficiency in solving standardized test-style inquiry 
questions. We can also determine the degree to which systematic behavior predicts robust 
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content knowledge. Finally, by developing and generalizing detectors across domains, we 
can determine the degree to which authentic inquiry skill transfers between domains. As 
such, these models have considerable potential to enable future “discovery with models” 
analyses that can shed light on the relationship between a student’s mastery of systematic 
experimentation strategies and their domain learning. 
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