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Abstract. In educational research, a fundamental goal is identifying which skills stu-
dents have mastered, which skills they have not, and which skills they are in the
process of mastering. As the number of examinees, items, and skills increases, the
estimation of even simple cognitive diagnosis models becomes difficult. We adopt a
faster, simpler approach: cluster acapability matrixestimating each student’s individ-
ual skill knowledge to generate skill set profile clusters of students. We complement
this approach with the introduction of an automatic subspace clustering method that
first identifies skills on which students are well-separated prior to clustering smaller
subspaces. This method also allows teachers to dictate the size and separation of the
clusters, if need be, for practical reasons. We demonstrate the feasibility and scalabil-
ity of our method on several simulated datasets and illustrate the difficulties inherent
in real data using a subset of online mathematics tutor data.

1 Introduction

One of the most important classroom objectives in educational research is identifying stu-
dents’ current stage of skill mastery (complete/partial/none). A variety of cognitive diag-
nosis models address this problem using information from a student response matrix and
an expert-elicited assignment matrix of the skills required for each item [10, 13]. However,
even simple models become more difficult to estimate as the numbers of skills, items, and
students grow [10]. Faster methods that scale well with large datasets and provide immedi-
ate feedback in the classroom are needed. In addition, these methods also need to be able
to incorporate practical information from and be interpreted by classroom teachers.

In previous work [1], we introduced acapability matrixshowing for each skill the propor-
tion correct on all items tried by each student involving that skill (extending the sum-score
work of [4,8]) and applied two standard clustering methods to identify students with similar
skill set profiles. This approach gives faster, comparable results to common cognitive diag-
nosis models, scales well to large datasets, and adds flexibility in skill mastery assignment
(allowing for partial mastery). However, the use of clustering algorithms usually requires
assumptions about the number, size, and shape of the clusters which may be unknown.
Moreover, standard techniques do not allow for easy incorporation of user-specified sepa-
ration and size thresholds.

In this paper, we complement our previous work by proposing an alternative approach, an
automatic conditional subspace clustering algorithm that takes advantage of obvious group

Educational Data Mining 2009

101



separation in one or more dimensions (skills). Users do not need to specify a number of
clusters nor a particular cluster shape. The method only requires a separation threshold (i.e.
how far apart groups of students should be before they would be considered different) and a
size threshold (i.e. what size would warrant the implementation of an additional strategy).

After describing the use of the capability matrix (Section 2), we introduce an algorithm in
Section 3 that identifies skills with clearly separated groups of students (if any) and corre-
spondingly partitions the feature space. In Sections 4, 5, we demonstrate the approach on
simulated data from a common cognitive diagnosis model as well as data from the Assist-
ment Project [7], an ongoing IES funded online mathematics tutor development research
project. Finally we conclude with comments on current and future work in Section 6.

2 Skill Set Profile Clustering

After estimating the students’ skill knowledge via the capability matrix (or other appro-
priate estimate), we use clustering methods to partition the students into similar skill set
profiles. In recent cognitive diagnosis clustering work, hierarchical clustering, k-means,
and model-based clustering have all been utilized. We do not detail the methods here (see
e.g. [5, 6] ) but instead briefly define and highlight strengths/weaknesses. Also, this paper’s
focus is the description of an automatic conditional subspace clustering algorithm; detailed
comparisons of estimates’ and algorithms’ performances are elsewhere [2].

2.1 The Capability Matrix

The capability matrix is constructed using an item-skill dependency matrixQ and a student
response matrixY. TheQ-matrix, also referred to as a transfer model or skill coding [3,
13], is aJ × K matrix whereq jk = 1 if item j requires skillk and 0 if it does not,J is
the total number of items, andK is the total number of skills. TheQ-matrix is usually an
expert-elicited assignment matrix. This paper assumes the givenQ-matrix is known and
correct. Student responses are assembled in aN × J response matrixY whereyi j indicates
both if studenti attempted itemj and whether or not they answered it correctly andN is the
total number of students. If studenti did not answer itemj, thenyi j = NA (i.e. Iyi j,NA = 0).
If studenti attempted itemj (Iyi j,NA = 1), thenyi j = 1 if they answered correctly (0 if not).

In [1], we define anN × K capability matrix B, whereBik is the proportion of correctly
answered items involving skillk that studenti attempted,

Bik =

∑J
j=1 Iyi j,NA · yi j · q jk
∑J

j=1 Iyi j,NA · q jk

whereyi j andq jk are the corresponding entries from the response matrixY andQ-matrix.
The vectorBi estimates studenti’s skill set knowledge and then maps studenti into a K-
dimensional hypercube. For each dimension, zero indicates no skill mastery, one is com-
plete mastery, and values in between are less certain. The 2K hypercube corners correspond
to the true skill set profilesCi = {Ci1,Ci2, ...,CiK },Cik ∈ {0, 1}. This skill knowledge esti-
mate accounts for the number of items in which the skill appears as well as for missing data.
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If Bik = NA, we impute an uninformative value (e.g., 0.5, mean, median). Exploring this
choice is ongoing. Here we assume the data are complete or correctly imputed. Similarly
to [4,8], we find groups of students with similar skill set profiles by clustering theBi.

2.2 Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering (HC) “links up” groups in order of closeness to form
a tree structure (dendrogram) from which a cluster solution can be extracted. The user-
defined distance measure is most commonly Euclidean distance. Briefly, all observations
begin as their own group. The distances between all pairs of groups are found (initially
just the distance between all pairs of observations). The closest two groups are merged; the
inter-group distances are then updated. We alternate the merging and updating operations
until we have one group containing all observations. The results are represented in a tree
structure where two groups are linked at the height equal to their inter-group distance. The
algorithm requiresa priori how to define the distance between two groups. Here we use
the common complete linkage method. Complete linkage defines the distance between two
groups as the largest distance between a pair of observations, one from each group, i.e.
d(Ck,Cl) = maxi∈Ck, j∈Cl ‖(xi − x j)‖

2. It tends to partition the data into spherical shapes.

Once constructed, we extractG clusters by cutting the tree at the height corresponding
to G branches; any cluster solution withG = 1, 2, ...,N is possible. In [4], extraction of
G = 2K clusters is suggested. This choice may not always be wise. First, if not all skill set
profiles are present in the population, we may split some profile clusters incorrectly into
two or more clusters. Moreover, ifN < 2K (a reasonable scenario for many end-of-year
assessment exams), we will be unable to extract the desired number of skill set profiles.

2.3 K-means

K-means is a popular iterative descent algorithm for dataX = {x1, x2, ..., xn} ∈ RK. It
uses squared Euclidean distance as a dissimilarity measure and tries to minimize within-
cluster distance and maximize between-cluster distance. For a given number of clusters
G, k-means searches for cluster centersmg and assignmentsA that minimize the criterion
minA

∑G
g=1

∑

A(i)=g ‖xi − x̄g‖
2. The algorithm alternates between optimizing the cluster cen-

ters for the current assignment (by the current cluster means) and optimizing the cluster
assignment for a given set of cluster centers (by assigning to the closest current center) un-
til convergence (i.e. cluster assignments do not change). It tends to find compact, spherical
clusters and requires the number of clustersG and a starting set of cluster centers.

A common method for initializing k-means is to choose a random set ofG observations as
the starting set of centers. In our hyper-cube, another natural set of starting cluster centers
could be the 2K skill set profiles at the corners. If students mapped closely to their profile
corners, k-means should easily locate the nearby groups. Again,G = 2K has been suggested
[4]. However, again if we are missing representatives from one or more skill set profiles in
our population, forcing 2K clusters may split some clusters into sub-clusters unnecessarily.
In [1], this issue was addressed by allowing k-means to have empty clusters.
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2.4 Model-Based Clustering

Model-based clustering (MBC) [5, 11] is a parametric statistical approach that assumes:
the dataX = {x1, x2, ..., xn}, xi ∈ RK are an independently and identically distributed sample
from an unknown population densityp(x); each population groupg is represented by a
(often Gaussian) densitypg(x); andp(x) is a weighted mixture of these density components,
i.e. p(x) =

∑G
g=1 πg · pg(x; θg) where

∑

πg = 1, 0 < πg ≤ 1 for g = 1, 2, ...,G, and
θg = (µg,Σg) for Gaussian components. The method chooses the number of components
G by maximizing the Bayesian Information Criterion (BIC) and estimates the means and
variances (µg,Σg) via maximum likelihood. While it may assume Gaussian components, its
flexibility on their shape, volume, and orientation allows student groups of varying shapes
and sizes. MBC also often fits overlapping components in an effort to improve fit; users
are not able to specify cluster separation information and are also required to give a range
of possible numbers of clusters. If multiple students map to the same hypercube location,
MBC may overfit the data by using spikes with near singular covariance in these locations.
To alleviate this concern (and improve visualization), we jitter theBi a small amount (0.01).
The effect on our results is minimal.

In all three cases, the algorithm returns a set of cluster centers and an assignment vector
mapping eachBi to a cluster. A cluster center represents the skill set profile for that subset
of students. Note that cluster centers are not restricted to be in the neighborhood of a
hypercube corner (although they could be assigned to one). Returning cluster centers rather
than their closest corners gives more conservative estimates of skill mastery (vs. 0/1).

As a small illustrative example, we use a subset of 26 items requiring three skills from
the Assistment System online mathematics tutor [7]. TheQ-matrix is unbalanced; Skill 1
(Evaluating Functions) appears in eight items (six single, two triple), Skill 2 (Multiplica-
tion) in 20 items (18 single, two triple), and Skill 3 (Unit Conversion) in two items (both
triple). Overall, 551 students answered at least one item. Figure 1 shows the corresponding
3-D cube, each corner one of eight true skill set profiles. Since Unit Conversion appears in
only two items,BiUC ∈ {0, 1

2, 1}; students are mapped to three well-separated planes.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0

0.2

0.4

0.6

0.8

1.0

Evaluate Functions

M
u

lt
ip

li
c
a

ti
o

n

U
n

it
 C

o
n

v
e

rs
io

n

3 3
3

3
3 3 33 333 3

3
3

3 33
33 3 3 333

3
33

3
333 333

333333 3 3
3 3333

333
3

333
3

33
3

33 33 3

333
333

3
3

3

3 33 33333
3

33 3

33 3
3 3

3
33 3

3
33 33 3

3
33 3333
333

3
33 333 33

3
3

33

3
3

3

3
3

3 3
3

33
33
333

3
3

3
33 333333 333

33
3

3
3 33

3

33 3
3 333 3 333 33
3

3
3

333 33
3

3333 3
3

3333
33

3333 3
3

33 33 3 33
333

33 3

3
3

33 3

3
3

3

3
3

3 3
3

333
3

333 333 3
3 3

3
3 3

3
33

333
3

3 33 3
3

3
3 333 3

3
3 333

3
3 3

3

3

33 33
3 3

3 33 3

33

3 3

3

3 3 33 3
3

3
3

33 3
333

3
3

33
33 3

3
3

3333

3

33 3
3

3

33
33 3

3
3

3
3

33
3333 3

33
3

333 3 33333
44 444 44 44 4 444

4 4444 44 4
444

4
444

4 4 4
4

4
4 44 444

44 444
4

4
4 44

4444
444

4
4

44
44

4
4

4 444 4
4 4

4444 4
4

4
44

4 44
4

4

4
4

4
4 4

4
4

4
44

44 4
4

4

2222

2

222
22222

2
22

2

2

2
2

2
22 2

7

7 7 77

7

7

7

7

7

777 7

7

7 7

7

7

77

77

77

7 7 88 8

888

8 8

888 88 888 88 8
8

8888888 88
8

1
1

1
11111

1
1

6
66 66

66

5 5 5

55

555
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0

0.2

0.4

0.6

0.8

1.0

Evaluate Functions

M
u

lt
ip

li
c
a

ti
o

n

U
n

it
 C

o
n

v
e

rs
io

n

3
3

3

3 3
3

33 3 3333
333333

3
33 3

33
3

33 333 3333 33 33 33
33333 333 3

3
33 333333 3333333333333

3 3 3 333
3

3
3
3 333333

333
3333 333 333

3

33 33
33

3 33333 33 333 33333 33 3
3

33 33 3333
3

333
33

33
3

333 33333

5

5 555 5

555

5 5

555 5

5

5 55
5

5

5 5

5

5
55

55

5

5

5
5

5

5

5555

5

55

5

5 555

55

555
5

5 5

77
7 77

7

77777 7
7

7
777

7
7

7

7777
77 777
777

7

7

7 77

7
77

7
77

7 7
77

7

7
77

7 7
777

7
77

7
77 77

8
8

8
8

8888
8

888

8
8

8

8

88
8

8

8

1 1
11 11 111 11

11
1 111 11
1

1 1
1

1
11

1
1

11
11

1111
1

1111 11 1
11

1 1
11 11

11
1

11
11

1 1
111

1
11

1
1

1
1 11 11

11 1
1

1 11 1

2
2

2

2
2 2

2

2

2

2

22

2

2
2

2
22

2
22

6
6

6666
66 6666666

6
66666666
6

666
6666666 66

6
666 6666

6 666
6

66666
6

6 66
6 6666

6666
66666666

44444444 444 444
4

444444444444444 444
4

444444444
444

444444
444 44444444 444 44

4444
444444

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0

0.2

0.4

0.6

0.8

1.0

Evaluate Functions

M
u

lt
ip

li
c
a

ti
o

n

U
n

it
 C

o
n

v
e

rs
io

n

3
33 333 333

3
3

3 310101010
10

101010101010101010
10

10

10

1010101010
10101010

10

10

10

10
10

1010
10

1010101010101010
1010

10
1010

1010101010
10

101010

101010
10

10

1010

10
10

1010
10

1010

10

10101010101022 2222
2 222
2

222
2

222222
22

222
2222222
22

2
2

2
222 222222222 222222222222222 22222

22
2

22222222
22

2
2

222
2

2222222222222222 121212121212
1212

12
12

12

12

1212
12

1212
121212
12

12
1212

12
1212

121212
121212

12
12

1212
12

121212
121212

121212
12

12
12

1212
12

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

111

1
1

1

1
1

111
11111

11 1
11

1

1

111

1
1

1

1

11
1

1

1

9999999999999999999999999999999999

7 7777 77
7 77

7
7

7

77 77777
7

66 6 6
6

66
6 666

6
6 6 444444444 4

4
4

44
4

44444
44 444
44444

44
4

444
44

444
4 4

444
4

4444 44

5 5 555 55 55
5

5

5 555 55 5 5555 5

88888888888888

13

13

13

13 13

13

13

13

13

13

14

14
14

14
141414

1414

14

14

14

Figure 1:Cluster Assignments: a) HC, CompleteG=8; b) K-meansG=8; c) MBCG=14
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Figures 1a-c) show the clusters found by HC (complete), k-means, and MBC respectively.
We setG=2K=8 for both HC and k-means; MBC searched overG=1 to 25, choosing 14.
Only MBC separated the students in the three Unit Conversion planes (BiUC=0:1-4, 6, 9-
14; BiUC=0.5: 5; BiUC=1: 7, 8). Both HC and k-means combined students with (arguably
very) different Unit Conversion capability across planes into clusters. In contrast, MBC
assigns one cluster to the students withBiUC=0.5 and two clusters to those withBiUC=1.0
(the corner cluster contains multiple students). In all three solutions, theBiUC=0 students
are split among several clusters defined by theirBEF andBM capabilities. In the HC and
k-means results, these clusters include one to three students withBiUC=0.5.

Updating the clusters with new items, skills, etc requires minimal computational time; for
example, MBC required≈ 21 seconds. Classroom teachers can quickly see the changes in
the students’ skill knowledge over time. However, none of the three solutions seems the
obvious winner. In addition, the user was only able to dictate the number of clusters (and
somewhat restrict shape); no guarantees were made about their separation and size.

3 Conditional Subspace Clustering or “Valley-Hunting”

In general, clusters are chosen according to a criterion or measure of closeness. Often the
user has to define the number of clusters in advance which could be useful to a teacher
with fixed resources. For example, he/she might ask for three groups of students clustered
on their skill knowledge. However, three clusters may not represent the class well. There
may be more or fewer unique skill set profiles. Moreover, the three clusters might be very
similar or very different sizes (which both may be impractical). A more useful definition
of a cluster might be a well-separated group of students larger than some size threshold.

While any skill’s marginal distribution will always have a finite number of unique values,
the marginal distribution of some skills may show very well-separated groups of students.
We can take advantage of these skills by partitioning the hypercube along their marginal
separations. This subsetting alone may be enough to divide students into appropriate clus-
ters. However, it may be the case that there is multivariate cluster structure not detectable
by examining the marginal distributions. As such, we advocate using this algorithm either
alone or as a dimension reduction tool for other clustering methods. That is, we could first
use the marginal distributions to select skills with obvious group structure and then cluster
(if needed) the resulting subspaces. Reducing the dimensionality prior to clustering can
greatly improve efficiency and/or results [11]. While the Figure 1 hyperplane separation
is clear, it could be very difficult to identify obvious separations in a higher dimensional
hypercube with noisier marginal distributions. A method to automatically find candidate
skills for partitioning (and alert teachers to skills that separate the class) is more desirable.

Akin to the nonparametric clustering notion that a density’s mode corresponds to a group
in the population [6] and the discretization of continuous variables, we condition on a skill
if its marginal distribution contains one or more “significant valleys”, a non-trivial area of
low density between two high density areas. This decision is made by investigating the
marginal distribution’s contours. Scanning from zero to one, the low density area must be
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preceded by a descent and followed by an ascent, both of gradient larger than a specified
depth threshold (cluster size), and must be wider than a specified width threshold (cluster
separation). There are at least two ways in which low density areas might occur. A skill
only occurs in a few items and so has few possibleBik values, or theBik might be centered
around only a few values. If one or more significant valleys are found, we partition the
hypercube at the minimum density point of each significant valley. (Other choices could
be made, e.g. the halfway point between the two peaks.) In practice, we initially search
for significant valleys in all skills’ marginal distributions to select skills for partitioning (if
any). The resulting subspaces consisting of dimensions (skills) without obvious separations
are then clustered if desired; the results can be combined into one final clustering solution.

Let τd, τw be the respective depth and width separation thresholds (user-specified). These
thresholds can be constant or differ over skills (τdk, τwk). For computational ease, we use
histograms to represent each skill’s marginal distribution. The user may also choose a
histogram bin width. The automatic subspace partitioning algorithm is as follows:

For each skillk:
Calculate the probability histogram for the given bin width. Letλi = height of Bini.
Define the gradientγi,i+1 as the difference in the percent of students in binsi, i + 1.
Let γN = λi − λ j be the total descent gradient from a peak (Bini) to a valley (Bin j).
Let γP = λi − λ j be the total ascent gradient from a valley (Bini) to a peak (Binj).
Let Lm be the location of the mode preceding the current valley (scan’s startpoint).
Let Lv be the location of the lowest height of the current valley.
Initialize Lm = Lv = Bin 1.

1) Scanγi,i+1 until γi,i+1 < 0.
If no such gradient exists, there are no remaining valleys.

2) Else, scanγi,i+1 until γi,i+1 ≥ 0 (end of valley) or out of bins; computeγN.
If |γN| > τd, have found a “significant” descent. SetLv = Bin i + 1.
3) Scanγi,i+1 until γi,i+1 < 0 (end of peak) or out of bins; computeγP.

If |γP| > τd, we have found a “significant” ascent. Find valley widthw.
If w > τw, significant valley; store mode locations. Else, do not store.
In either case, setLm = Lv = Bin i + 1. Scan for next valley(return to 1) .

Else, have not found significant ascent.
Scanγi,i+1 until γi,i+1 ≥ 0 (end of next valley) or out of bins.
If λi+1 < λLv, current valley is lower than valley atLv.

SetLv = Bin i + 1. (return to 3)
Else, current valley is higher than valley atLv; have “hiccup mode”.

(return to 3)
Else, have not found a significant descent.

Scanγi,i+1 until γi,i+1 < 0 (end of next peak) or out of bins.
If λi+1 > λLm, current peak is higher than peak atLm.

SetLm = Bin i + 1. Scan for next valley(return to 1) .
Else, current peak is lower than peak atLm; have “hiccup mode”.(return to 2)
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Figure 2:Marginal Skill Distributions: Illustrative Example, Three Assistment Skills

The spirit of our algorithm is similar to mode-hunting (e.g. [12]) excepting that we only
want to identify modes that are separated by a valley of substantial depth and width. In a
sense, we are “valley-hunting”. For example, if while searching for a descent of substantial
depth we find a “hiccup mode” where the marginal distribution slightly increases and then
continues to decrease, the algorithm does not view that small valley to be important. (A
“hiccup mode” might similarly be found when searching for a substantial ascent.) Figure
2a contains an example marginal distribution of Skillk, a histogram with bin width= 0.10.
For example, say a teacher will only adapt classroom strategies for groups of students
who are at least 10% of the class and whose capability values are separated by at least
20%. Givenτd = 0.1, τw = 0.2, we start at Bin 1 and immediately find a descent of 0.14
(1.5 · 0.10− 0.1 · 0.10). We know that there is at least one bin in the preceding mode with
at least 10% of the students (our depth threshold). We continue scanning to find a total
ascent of 0.135 (1.45 · 0.10− 0.1 · 0.10) at Bin 4, evidence that the next mode also has at
least 10% of the students. As both gradients exceedτd, we check that the valley is wide
enough by measuring the distance between the two modes (0.0, 0.3). Since 0.3 > 0.2 = τw,
both modes are separated by at least 20% capability, and we have identified a “significant
valley”. Continuing to scan, we find another descent and valley at Bin 6. In this case,
the descent is not large enough yet to indicate a well-separated group (Bin 7 is a “hiccup
mode”). A large enough descent is eventually found between Bin 4 and Bin 8, followed by
a significant ascent. The next significant valley is then from Bin 4 to Bin 10. We partition
the skill at Bin 2 (0.15) and Bin 8 (0.75) to create three groups of students of size at least
10% of the class separated by at least 20% capability on Skillk. If our thresholds were
τd = .045, τw = 0.10, four groups would have been found (cutpoints: 0.15, 0.55, 0.75).

Figure 2 also includes the three Assistment skill marginal distributions. While Unit Con-
version (Figure 2d) has three well-separated peaks, given reasonable depth/size thresholds,
our algorithm would not partition this skill since two non-zero bin counts are very small
(i.e. modes of trivial mass). We also would likely not partition the skewed Multiplication
distribution. Givenτd=0.1, τw=0.2, we do partition Evaluate Functions at 0.15, 0.75 for
three groups of students and cluster the three subsequent two-dimensional subspaces. Fig-
ure 3 shows the methods’ respective results. There is less cross-plane clustering in HC and
k-means without partitioning Unit Conversion (Figures 3a,b). MBC again chose 14 total
with similar results; however, the subspace clustering (including both finding the partitions
and clustering the subspaces) took≈ 6 seconds (vs. 21) for computational savings of 71%.
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Figure 3:Cluster Assignments: a) HC, CompleteG=3 · 22; b) K-meansG=3 · 22; c) MBC G=14

4 Recovering the True Skill Set Profiles

In this section, we simulate data from the DINA model, a common educational research
model, to compare the methods’ ability to recover the students’ true skill set profiles. The
deterministic inputs, noisy “and” gate model (DINA) is a conjunctive cognitive diagnosis
model used to estimate student skill knowledge [10]. The DINA model item response
form is P(yi j = 1 | ηi j , sj, g j)= (1− sj)ηi j g

1−ηi j
j whereαik = I

{Studenti has skillk} andηi j =
∏K

k=1 α
qjk

ik indicates if studenti has all skills needed for itemj; sj= P(yi j=0 | ηi j=1) is the slip
parameter; andg j= P(yi j=1 | ηi j=0) is the guess parameter. If studenti is missing any of
the required skills for itemj, P(yi j = 1) decreases due to the conjunctive assumption. Prior
to simulating theyi j , we fix the skills to be of equal medium difficulty with an inter-skill
correlation of either 0 or 0.25 and generate true skill set profilesCi for each student. In our
work thus far, only a perfect inter-skill correlation has a non-negligible effect on the results.
These parameter choices evenly spread students among the 2K natural skill set profiles. We
randomly draw our slip and guess parameters (sj ∼ Unif(0,0.30);g j ∼ Unif(0,0.15)). Given
the true skill set profiles and slip/guess parameters, we generate the student response matrix
Y. Then, using a fixedQ matrix, we calculate and cluster the correspondingB matrix.

For the first three methods, no partitioning is done (HC, k-means:G = 2K; MBC: searches
from 1 toG > 2K). In conditional subspace clustering, we initially useτd= 0.1, τw= 0.2
and then cluster the resulting subspaces (if any). To gauge performance, we calculate their
agreement to the true profiles using the Adjusted Rand Index (ARI), a common measure
of agreement between two partitions [9]. Under random partitioning, E[ARI]= 0, and the
maximum value is one. Larger values indicate better agreement.

Table 1 presents selected simulations forK = 3, 7, 10 for varyingJ,N. In the Cond (MBC)
column, the first ARI corresponds to the partitioning alone, the second to the clustering of
the partitioned subspaces (with MBC). We also vary the Q-matrix design to include only
single skill items, only multiple skill items, or both. In addition, the Q-matrix was balanced
(bal) or unbalanced (unbal). If balanced, all skills and skill combinations occur the same
number of times. Unbalanced refers to uneven representation of or missing skills (miss).
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Table 1:Comparing Clustering Methods with the True Generating Skill Set Profiles via ARIs
Selected

K J N Q Matrix Design HAC K-means MBC Cond (MBC) Skills
3 30 250 Single 1.000 1.000 0.970 1.000 3
3 30 250 Both, bal 0.792 0.615 0.939 0.531 (0.402) 2
3 30 250 Both, unbal, uneven 0.541 0.625 0.703 0.241 (0.641) 1
3 30 250 Both, unbal, miss 0.582 0.578 0.707 0.249 (0.713) 1
3 30 250 Multiple, bal 0.414 0.419 0.416 0.222 (0.495) 1
3 30 250 Multiple, unbal, uneven 0.350 0.504 0.515 — 0
3 30 250 Multiple, unbal, miss 0.235 0.242 0.194 — 0
7 40 300 Single 0.746 0.553 0.987 0.982 7
7 40 300 Both, unbal, miss 0.333 0.308 0.386 0.290 3
10 100 2500 Single 0.876 0.786 0.062 0.958 10

Excepting the multiple unbalanced design, the subspace algorithm selected one or more
skills for partitioning (in some cases, all skills were correctly selected). In almost all sim-
ulations, MBC was comparable to or better than HC and k-means for true skill set profile
recovery. The partitioning method coupled with using MBC on the reduced subspaces
gave comparable or better results in all cases except the balanced single and multiple skill
design. In addition, subspace partitioning/MBC was always faster than MBC alone.

Table 2:Comparison of Depth, Width Thresholds
τd τw Cond (MBC) Selected Skills
0.1 0.2 0.249 (0.713) 1
0.1 0.1 0.249 (0.713) 1
0.05 0.2 0.569 (0.510) 2
0.05 0.1 0.569 (0.510) 2
0.025 0.1 0.629 (0.694) 3

In addition, for the fourthK= 3, J= 30 Q matrix design, we vary the depth and width
thresholds. Smaller values ofτd, τw will find narrower, shallower separations; in addition,
smaller isolated clusters will be found. In this particular example, we found that as we
decreased the depth threshold, more skills were (correctly) selected, and the performance of
the partitioning by itself improved. While the parameters are designed to be user-specified,
we are currently exploring their behavior in order to make good default suggestions.

5 Thirteen Skill Assistment Example

Finally, we briefly look at a higher dimensional Assistment example withK=13 skills,
N=344 students, andJ=135 items. This data set included multiple skill items and a large
amount of missing response data. HC and k-means are not appropriate choices; finding
213=8192 clusters is unreasonable (without, say, allowing for empty clusters as in [1]);
MBC will largely depend on choosing an appropriate search range. The conditional sub-
space clustering algorithm, however, searches the space for obvious separation and parti-
tions 9 of the 13 skills for a total of 221 subspaces (1 sec). All subspaces contained≤ 13
students and so could likely be used alone or as subspaces for further clustering if needed.
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6 Conclusions

Wepresented a conditional subspace clustering algorithm for use with the capability matrix
(or similar skill knowledge estimate). The method selects skills that separate students well
and reduces dimensionality for subsequent clustering. Our work so far shows that for most
Q-matrix designs, the recovery of true skill set profiles is comparable or better than other
clustering methods while also including skill selection. Since the true profiles in the Assist-
ment examples are unknown, we cannot judge their recovery. However, visual inspection
indicates that the partitions and skill selection seem sensible. To our knowledge, work in
this area has not adequately addressed the need to analyze high-dimensional Q-matrices.
The approach presented, while allowing for real time estimation of student skill set profiles,
can handle large numbers of skills as well as incorporate practical user specifications.
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