
Improving Student Question Classification

Cecily Heiner and Joseph L. Zachary

{cecily,zachary}@cs.utah.edu
School of Computing, University of Utah

Abstract. Students in introductory programming classes often articulate their
questions and information needs incompletely. Consequently, the automatic
classification of student questions to provide automated tutorial responses is a
challenging problem. This paper analyzes 411 questions from an introductory
Java programming course by reducing the natural language of the questions to a
vector space, and then utilizing cosine similarity to identify similar previous
questions. We report classification accuracies between 23% and 55%, obtaining
substantial improvements by exploiting domain knowledge (compiler error
messages) and educational context (assignment name). Our mean reciprocal
rank scores are comparable to and arguably better than most scores reported in a
major information retrieval competition, even though our dataset consists of
questions asked by students that are difficult to classify. Our results are
especially timely and relevant for online courses where students are completing
the same set of assignments asynchronously and access to staff is limited.

1 Introduction

Students often ask their questions and express their information needs incompletely.
Consequently, the automatic classification of student questions, with the goal of
ultimately providing automated tutorial responses, is a challenging problem. For
example, the following are information requests from novice programming students:

• “How do i [sic] return the file extension only?”
• “I need help extracting a file extension from a filename.”

Although phrased differently, both sentences indicate the same need, namely help with
the file extension extraction problem; therefore, they should be classified the same way.

This paper classifies student questions by matching them to previous questions with
similar meanings but different phrasings. We deployed a software system in an
introductory computer science course for approximately one semester to collect
ecologically valid data. The system mediated and logged help requests between students
and teaching assistants(TAs), capturing both the students’ natural language and the
associated Java files. The goal of this phase of the research is to quantitatively compare
various approaches of classifying the questions that novice programming students ask.
The ultimate goal is to be able to provide automated answers to free form student
questions by recycling answers to similar previous questions.

2 Prior Work

The AutoTutor project has researched a number of different analytical approaches for
processing student language in response to tutorial prompts. They demonstrated that
Latent Semantic Analysis(LSA)[8] and cosine similarity with natural language were
viable approaches to selecting text for intelligent tutoring dialog with human raters as the

Educational Data Mining 2009

259

gold standard[13, 14]. The PedaBot project followed a similar line of research with a few
fundamental differences. First, the PedaBot project matched student discussions to
similar previous student discussion[7]. Because students are notoriously bad at
articulating their discussion points, matching student input to student input is a more
difficult problem than matching student input to expert-provided input. Second, although
the PedaBot approach did not require expert-provided answers, it did require a list of
expert-provided technical terms. The PedaBot project avoided generating these manually
by automatically extracting them from a textbook or other authoritative, expert provided
resource[7]. Like the AutoTutor group, the PedaBot group examined various techniques
for calculating similarity of the discussions in the system, with the focus on LSA and
cosine similarity[7].

Together, these groups have demonstrated convincingly that LSA and cosine similarity
are a promising direction for processing tutorial dialogue, but the general approach still
has a number of serious weaknesses. First, the research results are not as compelling as
they could be. The AutoTutor group reports correlations with r < 0.5[13], and the
PedaBot group reports finding discussions of “moderate relevance” or discussions that
rank three on a four point Likert scale[7]. Second, the approaches outlined require
significant expert-authored resources, either in the form of a list of ideal answers in the
case of AutoTutor or in the form of a list of technical terms for PedaBot, and matching
these technical terms is critical to both approaches. However, students (especially novice
programming students), often do not use technical vocabulary in articulating questions.
Third, the approaches seem to rely on students being unrealistically verbose in their
interactions with the system. In the AutoTutor dataset, the average length of student
responses was 18 words[13], and in our dataset, after stop words are removed, the median
length of a student question is six terms. Literature in the information retrieval
community has shown that longer queries are often more effective and robust[2], and
LSA is most effective with between 300 and 500 terms in the final matrix[3, 13].

By contrast, work in the information retrieval community has generally focused on the
query or perhaps a question as the articulation of a user’s information needs. A typical
web query is between two and three words in length (e.g. [2]) which is quite a bit shorter
than a discussion. Although a typical factoid question is longer than two or three words,
it is also quite short compared to a discussion. Providing automated answers to factoid
questions extracted from community question answering services has been extensively
studied as part of the Question Answering Track at Text Retrieval Conference (TREC)
(e.g. [12]). Later versions of the TREC competition utilized more difficult datasets and
more difficult tasks. Consequently, the scores in later years of the competition were often
lower (e.g. [4]), and comparing TREC results across years is like comparing apples and
oranges. The relatively low TREC competition scores suggest that answering questions
is a difficult task, even without the extra complications from student generated data.

One of the best systems submitted to TREC-9, LCC-SMU, specifically mentions
exploiting a technique called “answer caching” to provide answers to some questions that
utilize different wordings to express the same information need[9]. Answer caching is a
technique that matches an incoming question to a similar previous question (or group of
questions with the same answer) in order to recycle an answer. The original paper on

Educational Data Mining 2009

260

answer caching reports a 1-3% improvement on a dataset with well-formed, grammatical,
well-spelled questions. This paper reports a similar result on a more difficult dataset.

Classifying the questions that students ask is a more challenging task than automatically
answering factoid questions for several reasons. First, most questions that students ask
tend to be about assignments and exams(e.g. [6]) instead of factoids. Factoid questions
can usually be answered with a word or a phrase, while questions about assignments and
exams generally require answers with one or more sentences. Thus, the space of correct
answers for questions that students ask is much larger than the space of correct answers
to a factoid question, and the larger space makes question classification more difficult.
Second, questions asked by students in a class exist in an extensive educational context,
so the question “How do I draw a pyramid?” has a very different meaning in an
introductory programming class than it would in an introductory art class. Third,
questions asked in class are often of a more subjective nature, such as coding style, but
factoid questions are often of a more objective nature. Fourth, the questions students ask
tend to be ungrammatical and contain typos and spelling errors.

3 Data

Questions asked in Introduction to Computer Science 1 (CS1410) at the University of
Utah form the dataset for this paper. Most students in Computer Science 1 are age 18-
22. Computer Science 1 is the first required computer science course for computer
science majors, with a strong emphasis on the Java programming language. The course
has long hours for novice programmers and typically high dropout, fail, and withdrawal
rates. The majority of students who take Computer Science 1 hope to major in computer
science or a related field, but they must pass that class along with three others with
sufficiently high grades to attain official status as a computer science major. Although
approximately 233 students were active in the course during the study period, only 63 of
them asked questions while using the study’s logging software during the study period.

The goal of this research is to classify the questions that students ask by automatically
identifying similar previous questions. To facilitate analysis of student questions, a
proprietary software system logged the questions that the students asked and the
accompanying source code during the study period. The long term goal is to complete
the analysis for a question in real time and exploit it for an instant tutorial intervention.
In the interim, when a student asks a question, the system logs the student’s question and
source code and passes it to a teaching assistant (TA) who can answer the question in
person or remotely. The TA then tags the question to indicate an answer category.

We tagged all of the data by associating all questions that could be answered with the
same response to the same, unique tag. Then an undergraduate TA tagged approximately
15% of the data, assigning tags from a set devised for that assignment. The TA did not
recode the other 85% of the data, but because the inter-rater reliability for the questions
we sampled was better than 95%, we included all of the data in the final dataset. This left
a dataset of 411 questions from 13 different assignments covering a total of 136 answer
categories or information needs. Of the 411 questions, 275 of the questions (136
subtracted from 411) were repetitive in nature, and had a similar previous question. That

Educational Data Mining 2009

261

means that 66% of the questions were repetitive. Excluding stop words, length of
student questions ranged from 0 to 93 terms, with a median of six words and a mode of
four words. Approximately 2% of the questions had no terms after stop words were
excluded. More than 90% of the questions had 16 terms or fewer.

4 Similarity Scoring

We follow typical practice for processing the natural language in the questions that the
students asked. The sentences were tokenized based on spaces and other special
characters. Stop words (e.g. “me”, “you”, and “the”) were excluded. Then, a Porter
stemmer[10] removed the word endings leaving just the word stem (e.g. the word
“extension” became “extens”). The word stems from each question then form a vector.
Table 1 shows some sample student questions and the corresponding vectors of stems.

Table 1: Sample Questions, Vector Stems, and Answer Categories
 Natural Language Vector Stems Answer Category
Q1 How do i return the file extension only? return file extens

File extension
extraction

Q2 my variable for rectSideOne is suppose to be
1/9, the program is returning a 0 for this
calculation. I have no idea why.

Variabl rectsideon suppos
1/9
program return calcul idea

Integer division

Q3 I need help extracting a file extension from a
filename.

need help extract file extens
filename

File extension
extraction

Q4 program is not computing volume correctly Program comput volum
correctly

Integer division

Q5 Im having trouble understanding why (1/9)
equals 0.0 instead of
0.111111

trouble understand 1/9
equal

Integer division

The word stems that remained for each question populated a frequency matrix fij, which
gives the number of times word stem j appears in question i. This matrix has 411 rows
(one per question) and one column per unique word stem. The questions were compared
in the order they were originally asked by the students to all previously asked questions.
Specifically, we used cosine similarity (Equation 1) to compare question i against each of
questions 1 through i-1, using weights wij computed from the frequencies fij with standard
term frequency, inverse document frequency (tfidf) weighting. The tfidf weights were
recomputed each time the algorithm advanced to the next question, which effectively
enlarged the model by one question.

The remainder of the analysis utilizes an online learning framework to identify similar
previous questions. Each question is compared to all previous questions, and the
previous question with the highest cosine similarity score (as shown in Equation 1) when
compared to this question is considered the most similar. If the current question and the
most similar question have the same answer category, the system earns a point for
accuracy. For example, in Table 1, Q2 would only be compared to Q1, and the system
would not earn a point for accuracy. However, Q5 would be compared to Q1, Q2, Q3,
and Q4. Of these, Q2 would be the most similar, and since Q2 and Q5 share an answer
category, the system would earn one point for accuracy.

Educational Data Mining 2009

262

Equation 1: Cosine Similarity

5 Analysis and Results

5.1 Baseline Cosine Similarity

As shown in Figure 1 and Table 2, we report accuracy scores with three different
denominators. In total questions, 411 is always the denominator. In repetitive questions,
either 275 or 204 is the denominator depending whether or not the data is disaggregated.
Of these, only the repetitive questions bar could theoretically reach 100%. In both cases,
the numerator is the number of correct similar questions found(93). As a baseline,
cosine similarity is applied to the natural language of the students’ questions. With that
baseline, the algorithm can classify approximately 35% of the repetitive questions or 23%
the total questions. For those questions, an answer to a previous question could
theoretically be recycled to answer that question.

Table 2: Classification Accuracy Counts and Percentages

 Aggregated Disaggregated
 Total Questions Repetitive Questions Total Questions Repetitive Questions
Baseline

93/411
(23%)

93/275
(35%)

113/411
(27%)

113/204
(55%)

With Error Msgs
and Answer Cache

104/411
(25%)

104/275
(39%)

111/411
(27%)

111/204
(54%)

Classification Accuracy

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%

Baseline
(Cosine

Similarity with
Natural

Language)

With Answer
Caching and

Error Messages

With
Disaggregation
by Assignment

With Answer
Caching and

Error Messages
and

Disaggregation

Classification Method

Pe
rc

en
t Q

ue
st

io
ns

C

la
ss

ifi
ed

 C
or

re
ct

ly

Total Questions
RepetitiveQuestions

Figure 1 Classification Accuracy

Educational Data Mining 2009

263

5.2 With Error Messages and Answer Caching

The classification techniques described so far are inherently domain independent.
However, the low accuracy of question classification suggests room for substantial
improvement. One possible way to improve classification is to leverage some domain
specific knowledge, specifically the error messages from the compiler. Since more than
40% of the questions were submitted with code that did not compile, the compiler error
messages represent a source of substantial unused data.

A naïve approach to incorporating compiler output would be to simply tokenize the errors
and include them just as the natural language was included. The problem is that errors
such as missing import and capitalization will appear to be very similar because they
contain four similar tokens (“cannot”, “find”, “symbol”, and “class”), and the algorithm
will be unable to distinguish between them. To remediate this problem, some of the most
common compiler errors and code snapshots are processed by Java code that generates a
brief description of the underlying error based on the code snapshot, and then the
underlying error is incorporated into the model. For example, the common error message
“cannot find symbol- class Scanner” is processed and becomes “missingImport”, and the
common error message “cannot find symbol –class string” becomes “capitalization”.

Previous work has exploited a technique called “answer caching” to provide answers to
some questions that utilize different wordings to express the same information need[10].
Answer caching matches an incoming question to a similar previous question in order to
recycle an answer. The answer caching technique then leverages the additional language
in the similar question to build a more robust language model of that information need.
Specifically, answer caching merges the data from vectors that indicate a similar
information need to form a single vector. Without answer caching, the five questions in
Table 1 are modeled with five vectors. With answer caching, they are represented with
two vectors, one for “File extension extraction”(the sum of the vectors for Q1 and Q3)
and one for “Integer division”(the sum of the vectors for Q2, Q4, and Q5).

The original paper on answer caching reports a 1-3% improvement on a dataset with
well-formed, grammatical, well-spelled questions. Figure 1 demonstrates a similar
improvement when incorporating both answer caching and the processed error messages,
even though our data consists of student questions with typos and other complications.
Interestingly, the processed error messages alone do not improve classification, and
answer caching alone produces a minor improvement of less than 1%, but the
combination of the techniques improves accuracy by 3% of the total questions. The
numerator in for the “With Answer Caching and Error Messages” method is 104, and the
denominators are the same as they were in the baseline conditions, 411 for total questions
and 275 for repetitive questions.

5.3 Disaggregating by Assignment

For a final improvement in classification accuracy, the data was disaggregated by
assignment. For example, assignment1 questions were compared only to other
assignment1 questions and assignment5 questions were compared only other assignment5

Educational Data Mining 2009

264

questions. As shown in Figure 1, this technique improved the numerator to 113 questions
classified correctly or 27% of total questions and 55% of repetitive questions

With the data disaggregated by assignment, incorporating answer caching and error
messages reduced accuracy slightly(111 questions classified correctly). The lack of
sufficient data to model different kinds of compiler errors is probably the cause of a drop
in accuracy when answer caching and error messages are incorporated. Because
compiler errors are being reduced to a single term, several of them are necessary to boost
the compiler error terms to a heavy enough weight to influence the similarity algorithm.
Excluding error messages and answer caching returns the classification algorithm to a
domain independent state. Compiler error messages are a source of data that are only
relevant in the computer science domain. By contrast, natural language and assignment
numbers are a data source that is available in virtually every educational domain.

5.4 Discussion

We have shown that the baseline algorithm can be improved by incorporating an answer
caching/compiler error extension (an additional 4% of repetitive questions classified.)
This improves on the earlier results on answer caching[9], and is especially noteworthy
given that we obtained our results on a student-generated corpus.

Most importantly, we have shown that the baseline algorithm can be improved by
disaggregating by assignment (an additional 7% of repetitive questions classified.) In
fact, this percentage substantially understates the actual improvement that we observed.
To facilitate comparison in the bar charts, we use the same denominators throughout.
However, when comparing questions only within the same assignment, the number of
repetitive questions is actually smaller (204). Using that as the denominator yields a
classification accuracy of 55% of repetitive questions.

Classification accuracies of 55% are neither great nor terrible. They are good enough
that a desperate student who is working on an assignment at midnight might actually be
able to find a useful bit of information when a human TA is not on duty. In such a
situation, a bad answer may be better than no answer. However, they are low enough to
raise concern that the system may not answer student questions correctly, and worse, the
system might lead the student astray. At least two alternatives are possible intermediate
steps to deploying this in a real classroom. First, the existing corpus could be leveraged
as a starting point for designing common error detectors and appropriate interventions.
Second, a human TA could supervise the classification algorithm, and override any
incorrect decisions that it makes, until the number of incorrect decisions decreases.

6 Limitations and Future Work

6.1 Classification Schemes for Questions that Novice Programmers Ask

Given a set of categories, classifying questions appears to be relatively straightforward
for humans. However, no widely accepted set of categories or taxonomy exists for the
questions that novice programmers ask. Previous work has suggested either 42, 88, or

Educational Data Mining 2009

265

226 different categories for compiler errors [1, 5, 11], and compiler errors only account
for half of the questions in the data set presented in this paper. Those papers are simply
trying to classify compiler errors based on the compiler error message, not the underlying
misconception the student has expressed. Furthermore, a single piece of code may have
multiple issues. Ideally, students would request help at the point of a partial impasse, but
students appear to frequently wait until they have reached a full impasse before
requesting help. The resulting code often has many problems. In this study, such a
question would have probably been assigned a label that encompasses a broad range of
problems. Work on classification schemes that allow free-response student-input to be
assigned multiple, more-fine-grained designations would be applicable for question
classification as well as other problems. That research will probably also require work on
partial parsing, and other approaches for handling poorly formed student input that
cannot be parsed with readily available tools.

6.2 Usability issues

A number of usability issues on both the teacher and the student side must be resolved
before an automatic question answering system can be deployed in a classroom setting.
On the teacher side, training may be necessary to classify student questions correctly.
Once automated interventions are added, the teacher will need to determine if the student
still needs human help because the system classified the question incorrectly or because
the automated intervention was ineffective. On the student side, studies should
investigate whether or not a drop-down menu of frequently asked questions can help
students articulate their questions, and whether or not students accept automated answers
to their questions, especially if they know that a human TA is on duty and available.

6.3 Model of time spent

The data collected for this study could be reanalyzed to build a model of how long it
takes to answer a particular question taking into account factors such as the student
asking the question, the question that was asked, and the teacher answering the question.
Such a model could help answer questions about which factors are most important in
predicting the amount of time it will take to answer a question. Such a model may also
allow the system to automatically perform triage, determining which questions are the
quickest and most urgent to answer and suggesting that a teacher answer those first, thus
reducing total student wait time. However, some students who are accustomed to first in
first out service might complain that such an approach is unfair.

6.4 Improving the feature set and data set

A larger dataset may support stronger claims and possibly allow interesting
disaggregations in different dimensions. For example, with more data, the combination of
disaggregating by assignment and including error messages and answer caching may be
more accurate than disaggregating by assignment alone. The feature set could be better.
For example, compound words are not well analyzed, so a question containing the words
“monthly” and “payment” may not have any terms in common with a question containing
the word “monthlyPayment” even though they are clearly semantically similar.

Educational Data Mining 2009

266

Additionally, many compiler errors and features that could be extracted from student
source code, such as extra semicolons before the body of a loop, are ignored.

7 Contributions and Conclusions

We show that cosine similarity is a non-trivial baseline for experiments to improve
accuracy in question classification. We discuss previous results showing that answer
caching can improve accuracy by 1-3% and extend previous work on answer caching by
achieving similar improvement on a more difficult dataset and demonstrating that it is a
valid approach for tutorial dialogue by utilizing an ecologically valid dataset. We
demonstrate that additional improvements in accuracy are possible by exploiting other
sources of data beyond the natural language of student questions, and we demonstrate
additional modest gains in accuracy using some compiler errors. These techniques
produce a 4-7% improvement in question classification accuracy, bringing total question
classification accuracy to 28% of all questions or 42% of repetitive questions, or 56% of
repetitive questions when disaggregated by assignment.

Our classification methods work over half the time for student-generated questions,
assuming that the questions can be separated by assignment. Thus, our methods would
work particularly well in a course in which the same assignments are used over and over,
and our long-term goal of using a classification-based approach to automatically answer
questions would be especially valuable in a course in which students have low access to
course staff. These two conditions are typical of online classes, which represent a fast
growing segment of courses in higher education.

Acknowledgements

This work was partially supported by the National Science Foundation, under REESE
Grant No. DRL-0735264. Thank you to the students and instructors who used the data
collection system. Peter Hastings provided an excellent stopword list. Thank you to
reviewers who have provided useful feedback to improve this research.

References

[1] Ahmadzadeh, M., Elliman, D., Higgins, C., An analysis of patterns of debugging
among novice computer science students, in Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in computer science education. 2005, ACM:
Caparica, Portugal.

[2] Belkin, N. J., Kelly, D., Kim, G., Kim, J. Y., Lee, H. J., Muresan, G., Tang, M. C.,
Yuan, X. J., Cool, C., Query length in interactive information retrieval, in Proceedings of
the 26th annual international ACM SIGIR conference on Research and development in
information retrieval. 2003, ACM: Toronto, Canada.

[3] Bradford, R. B., An empirical study of required dimensionality for large-scale latent
semantic indexing applications, in Proceeding of the 17th ACM conference on
Information and knowledge management. 2008, ACM: Napa Valley, California, USA.

Educational Data Mining 2009

267

[4] Dang, H. T., Lin, J., Kelly, D. Overview of the TREC 2006 Question Answering
Track. Text REtrieval Conference, 2006.

[5] Jadud, M. C., A First Look at Novice Compilation Behaviour Using BlueJ. Computer
Science Education, 2005. 15(1): p. 25 - 40.

[6] Kim, J., Shaw, E., Chern, G., Herbert, R. Novel tools for assessing student
discussions: Modeling threads and participant roles using speech act and course topic
analysis. Artificial Intelligence in Education, 2007. IOS Press.

[7] Kim, J., Shaw, E., Ravi, S., Tavano, E., Arromratana, A., Sarda, P., Scaffolding On-
Line Discussions with Past Discussions: An Analysis and Pilot Study of PedaBot, in
Intelligent Tutoring Systems. 2008. p. 343-352.

[8] Landauer, T. K., Foltz, P. W., Laham, D., An Introduction to Latent Semantic
Analysis. Discourse Processes, 1998. 25(2/3): p. 259-284.

[9] Pasca, M. A., Harabagiu, S. M., High performance question/answering, in
Proceedings of the 24th annual international ACM SIGIR conference on Research and
development in information retrieval. 2001, ACM: New Orleans, Louisiana, United
States.

[10] Porter, M. F., An algorithm for suffix stripping. Program, 1980. 14: p. 130-137.

[11] Thompson, S. M., An Exploratory Study of Novice Programming Experiences and
Errors. 2006, University of Victoria. p. 153.

[12] Voorhees, E. M. Overview of the TREC 2001 Question Answering Track. Text
REtrieval Conference (TREC), 2001.

[13] Wiemer-Hastings, P., Wiemer-Hastings, K., Graesser, A. How Latent is Latent
Semantic Analysis? Proceedings of the 16th International Joint Congress on Artificial
Intelligence, 1999. Morgan Kaufmann.

[14] Wiemer-Hastings, P., Wiemer-Hastings, K., Graesser, A. C. Approximate natural
language understanding for an intelligent tutor. 12th International Florida Artificial
Intelligence Research Conference, 1999. AAAI Press.

Educational Data Mining 2009

268

