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Preface

The Second International Conference on Educational Data Mining
(EDM2009) was held at the University of Cordéba, Spain, on July 1-3,
2009. It follows the first edition of the conference held in Montreal in 2008,
and a series of workshops within the AAAI, AIED, EC-TEL, ICALT, ITS,
and UM conferences. EDM2010 will be held in Pittsburg, US.

EDM brings together researchers from computer science, education,
psychology, psychometrics, and statistics to analyze large data sets to
answer educational research questions. The increase in instrumented ed-
ucational software and databases of student test scores, has created large
repositories of data reflecting how students learn. The EDM conference
focuses on computational approaches for using those data to address im-
portant educational questions. The broad collection of research disciplines
ensures cross fertilization of ideas, with the central questions of educa-
tional research serving as a unifying focus.

We received a total of 54 submissions from 24 countries. Submissions
were reviewed by three reviewers and 20 of them were accepted as full
papers (37.03% acceptance rate). 13 other submissions were accepted as
poster or as student papers. All papers will appear both on the web,
at www.educationaldatamining.org, as well as in the printed proceed-
ings. The conference also included invited talks by Professor Arthur C.
Graesser from University of Memphis and by Professor Bamshad Mobasher
from DePaul University.

We would like to thank the Universidad de Cérdoba, Escuela Uni-
versitaria Politécnica, Junta de Andalucia y Ministerio de Ciencia e In-
novacién for their generous sponsorship of EDM2009. We would like to
thank the program committee members, local committee, web chair, the
reviewers and the invited speakers for their enthusiastic help in putting
this conference together.

Tiffany Barnes
Michel C. Desmarais
Cristébal Romero
Sebastian Ventura
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A Comparison of Student Skill Knowledge Estimates

Elizabeth Ayers', Rebecca Nugent!, and Nema Dean?
{eayers, rnugent} @stat.cmu.edu, {nema}@stats.gla.ac.uk
'Department of Statistics, Carnegie Mellon University
2Department of Statistics, University of Glasgow

A fundamental goal of educational research is identifying students’ current stage of
skill mastery (complete/partial/none). In recent years a number of cognitive diagnosis
models have become a popular means of estimating student skill knowledge. However,
these models become difficult to estimate as the number of students, items, and skills
grows. There exist alternatives such as sum-scores and the capability matrix. While
initial theoretical work on sum-scores has been done, the behavior of sum-scores and
the capability matrix is not well understood with respect to each other or to estimates
from cognitive diagnosis models. In this paper we compare the performance of the
three estimates of student skill knowledge under a variety of clustering methods using
simulated data with varying levels of missing values.

1 Introduction

A fundamental goal of educational research is identifying students’ current stage of
skill mastery (complete/partial/none). In addition, finding groups of students with similar
skill set profiles is important to provide feedback for classroom instruction. In recent years
a number of cognitive diagnosis models [3,8] have become a popular means of estimating
student skill knowledge. However, these models become difficult and time-consuming
to estimate as the number of students, items, and skills increases [8]. Two alternative
estimates, sum-scores [3,6] and the capability matrix [1], can be used to estimate student
skill knowledge in (near to) real time. Estimates are subsequently clustered to identify
similar skill set profiles.

While initial theoretical work on sum-scores has been done [3], the behavior and per-
formance of sum-scores and the capability matrix is not well understood in comparison
with each other or with estimates from cognitive diagnosis models. The performance of
the methods when missing values occur is also of interest. Moreover, which clustering
method to employ is an open question. In this work we take a step back and compare
the performance of three estimates of student skill knowledge under a variety of clustering
methods. In Section 2, we describe the three different estimates of student skill knowledge.
In Section 3, we give a brief introduction to the clustering methods used. In Section 4,
we show results from a simulation study incorporating varying amounts of missing data.
Finally, in Section 5, we offer conclusions and thoughts on future work.

2 Estimates of Student Skill Knowledge

While there may be several possible methods to estimate student skill knowledge, this
paper will consider one traditional Bayesian estimation procedure and two simpler statis-
tics. First, we introduce notation that will be common among the methods. We begin by
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assembling the skill dependencies of each item into a Q-matrix [2,12]. The Q-matrix, also
referred to as a transfer model or skill coding, is a J X K matrix where g = 1 if item j
requires skill k and 0 if it does not, J is the total number of items, and K is the total number
of skills. The Q-matrix is usually an expert-elicited assignment matrix. This paper assumes
the Q-matrix is known and correct.

There are (at least) two ways in which Q-matrices can differ. First, each item could
require only a single skill or multiple skills. A Q-matrix can then be comprised of all
single skill items, single and multiple skill items, or all multiple skill items. Second, the
(Q-matrix may have a balanced or unbalanced design. In a balanced design, all single skill
items occur the same number of times, and each combination of skills occurs the same
number of times. For example, if K = 3 and J = 30 one possible balanced design would
be: five single skill items for each skill, four double skill items for each pair of skills, and
three triple skill items. A design could be unbalanced in two ways. Either all skills or
combinations of skills are present but do not occur the same number of times or there are
missing skills or combinations of skills.

qi1,1 4912 --- 91K yir Y12 oo YV1J

q51 452 ... 4JK YN1 YN2 .- YNJ

We then assemble student responses in a N X J response matrix ¥ where y;; indicates
both if student i attempted item j and whether or not they answered item j correctly and
N is the total number of students. If student i did not answer item j then y;; = NA. The
indicator I, »y4 = O expresses this missing value. If student i attempted item j (1, .ya = 1),
then y;; = 1 if they answered correctly, or O if they answered incorrectly.

2.1 DINA Model Estimates

The first method of estimating student skill knowledge uses a common conjunctive
cognitive diagnosis model. The deterministic inputs, noisy “and” gate model (DINA; [8])
models student responses as

ey
P(Yij =11 ny,s;,8) = (1—s)"ig,™ (1)
where @i = IStudent i has skill » 1ndicates if student i possesses skill k, 7;; = [T, o
indicates if student 7 has all skills needed for item j, s; = P(Y;; = 0| n;; = 1) is the slip
parameter, and g; = P(Y;; = 1 | ;; = 0) is the guess parameter. If a student is missing any
of the required skills, the probability that they will answer an item correctly drops due to
the conjunctive assumption.

We estimate the student skill knowledge parameters of the DINA model, the a;, using
Markov Chain Monte Carlo methods with the program WinBUGS (Bayesian Inference
Using Gibbs Sampling, [9]). In the model, the a;; are 0/1 indicating whether or not student
i has mastered skill k. Our estimates will be &;, € [0, 1]. We can think of the &; as the
probability that student i has mastered skill .
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2.2 Sum-scores

The second estimate we consider is the sum-score method of [3,6]. Here W; = (W;,
Wi, ..., Wik) is a vector of sum-scores where the k" component is defined as

J
Wi = Z)’ijqj'k, 2)
=

where y;; and g are the corresponding entries from the response matrix ¥ and Q-matrix.
Thus, the components of W; are simply the number of items student i answered correctly
for each skill k. When an item requires more than one skill it will contribute to more than
one component of W;. The range of W may be different for each & if the skills are required
by a different number of problems.

2.3 Capability Matrix

Finally, we consider the capability matrix defined in [1]. The capability matrix B is an
N x K matrix where By is the proportion of correctly answered items involving skill & that
student i attempted. Thus,

J
B, = ijl Ly xna - Yij - qjk, 3)

J
Zj:l Iy,’j#»NA : qﬂ<

where y;; and g are the corresponding entries from the response matrix ¥ and Q-matrix.
The capability matrix expands on sum-scores by accounting for the number of items re-
quiring skill £ that student i answered. In this manner the statistic scales for the number of
items in which the skill appears as well as for missing data. If a student has not seen all
of the items requiring a particular skill, we still derive an estimate based on the available
information. If student i completes no items involving skill k, then B; = NA. In this case,
we impute an uninformative value (e.g., 0.5, mean, median) to map students to the hyper-
cube. Exploring the performance of these imputation choices is ongoing. For this paper we
assume that the data are complete or that missing B-values are appropriately imputed.

We can note that both the DINA model estimates and the B-matrix values map students
into a K-dimensional hypercube (for each dimension, zero indicates total lack of skill mas-
tery, one is complete skill mastery, and values in between are less certain). The 2X corners
of the hypercube correspond to natural skill set profiles C; = {C;;, Cp, ..., Cix}, Cix € {0, 1}.

Additionally, we can note theoretical connections between the sum-scores and B-matrix
values. If there are no missing response values y;;, then

Wik = JiBi, 4)

where J; is the number of items that require skill k. When all students have answered
all questions and there is a balanced Q-matrix design (i.e., J; = J, = ... = Jx), the two
estimates will mapto the same (scaled) feature space. In this case, we expect the two
estimates to perform similarly. However, when there is either missing data or an unbalanced
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Q-matrix design, the space to which the estimates map will be different. In this case, we
cannot guarantee that performance will be similar.

3 Clustering Methods

To identify groups of students with similar skill set profiles, we cluster the student
skill knowledge estimates. In this paper we will compare the performance of three com-
mon clustering methods: hierarchical agglomerative clustering, K-means, and model-based
clustering. In the sections below we briefly introduce each of these methods.

3.1 Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering (HAC; [10]) links groups in order of closeness to
form a tree structure from which a clustering solution can be extracted. Euclidean distance
is most commonly used to measure the distance between groups. The method also requires
the user to specify how to measure the distance between groups. We will use “complete”
linkage where the distance between any two groups is defined as the largest distance be-
tween two observations, one from each group. In HAC, all observations begin as their own
group. The two closest groups are merged and all inter-group distances are recalculated.
We continue merging groups and recalculating distances until a single group with all ob-
servations is formed. Once the tree structure is formed, we can extract the desired number
of clusters G by cutting the tree at a height corresponding to G branches.

3.2 K-means

K-Means [5] is a popular iterative descent algorithm for data X = {x,, x,..., x }, x, € RX.
It uses squared Euclidean distance as a dissimilarity measure and tries to minimize within-
cluster distance and maximize between-cluster distance. For a given number of clusters G,
K-Means searches for cluster centers m, and assignments A that minimize the criterion

G
. 2
mn >, 3 b

g=1 AG)=¢

The algorithm alternates between optimizing the cluster centers for the current assign-
ment (by the current cluster means) and optimizing the cluster assignment for a given set
of cluster centers (by assigning to the closest current center) until convergence (i.e. clus-
ter assignments do not change). It tends to find compact, spherical clusters and requires a
priori both the number of clusters G and a starting set of cluster centers. The final clus-
ter assignment can be sensitive to the choice of centers; a common method for initializing
K-Means is to randomly choose G observations.

3.3 Model-based Clustering

Model-based clustering [4, 11] is a parametric statistical approach that assumes: the
data X = {x,,x,,...X,}, X, € RX are an independently and identically distributed sample

from an unknown population density p(x); each population group g is represented by a

4
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Table 1: Clustering the DINA Model Estimates of Student Skill Knowledge
| N [ J | K| O-matrixdesign | DINA | HAC |K-means | MBC | MBC2* |

250 {30 | 3 Single, bal 1.000 1.000 0.8739 0.9966 1.000
(0.0054) | (0.0054) | (0.0736) | (0.0895) | (0.0349)
250 {30 | 3 Both, bal 0.9793 | 0.9781 0.8367 0.8915 0.9632

(0.0179) | (0.0200) | (0.1192) | (0.0882) | (0.1087)
250 | 30 | 3 | Bothunbal,all | 0.9657 | 0.9657 | 0.7789 | 0.9129 | 0.9350
(0.0285) | (0.2920) | (0.0941) | (0.0505) | (0.0758)
250 | 30 | 3 | Both,unbal,miss | 0.9240 | 09131 | 0.7696 | 0.8811 | 0.9132
(0.0395) | (0.0427) | (0.0858) | (0.0696) | (0.0428)
250 | 30 | 3 Mult, bal 04677 | 05127 | 05012 | 0.5282 | 0.4979
(0.0292) | (0.0443) | (0.0578) | (0.0690) | (0.0411)
250 | 30 | 3 | Mult, unbal, all | 04629 | 0.4874 | 0.4948 | 0.5130 | 0.4790
(0.0430) | (0.0536) | (0.0816) | (0.0736) | (0.0495)
250 | 30 | 3 | Mult, unbal, miss | 0.3239 | 0.4070 | 0.3835 | 0.4266 | 0.4090
(0.0380) | (0.0596) | (0.0521) | (0.0837) | (0.0630)
500 | 68 | 5 Both, bal 0.9463 | 09428 | 0.7132 | 0.8348 | 0.9243
(0.0184) | (0.0188) | (0.0428) | (0.1123) | (0.0488)
500 | 68 | 5 | Both, unbal, miss | 0.8724 | 0.8729 | 0.6665 | 0.8213 | 0.8624
(0.0247) | (0.0219) | (0.0466) | (0.0960) | (0.0226)
300 | 40 | 7 Single 0.9041 | 0.8891 | 0.7674 | 0.3050 | 0.8881
(0.0262) | (0.0286) | (0.0409) | (0.1203) | (0.0282)

(often Gaussian) density p,(x); and p(x) is a weighted mixture of these density components,
ie. px) = ZgG:l 7ty - pe(x;6,) where }m, = 1,0 <7, < 1forg = 1,2,...,G, and
0, = (ug,%,) for Gaussian components. The method chooses the number of components
G by maximizing the Bayesian Information Criterion (BIC) and estimates the means and
variances (,, 2,) via maximum likelihood. While it may assume Gaussian components, its
flexibility on their shape, volume, and orientation allows student groups of varying shapes
and sizes. When multiple students map to the same location, model-based clustering is
known to overfit the data by using spikes with near singular covariance in these locations
[4]. To alleviate this concern, we jitter the student skill estimates by a small amount (0.01).
The effect on our results is minimal.

4 Simulation Study

To compare the skill knowledge estimates and clustering methods described above we
did a simulation study using generated data from the DINA model (Equation 1). The Q-
matrix design is varied to include balanced and unbalanced combinations of single and
multiple skill items. Then, for a fixed Q-matrix design, we simulate 20 different student
populations. Skill difficulties are always set to equal medium difficulty; inter-skill correla-
tions are set to zero. These choices evenly spread students among the 2% natural skill set
profiles [0, 1]X. For each student population, we generate true skill set profiles C;. We then
draw slip and guess parameters from a random uniform distribution (s; ~ Unif(0,0.30); g; ~
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Table 2: Clustering the Sum-scores Estimates of Student Skill Knowledge
| N [ J |K | O-matrixdesign | HAC | K-means | MBC [ MBC2X |

250 1 30| 3 Single, bal 0.9910 0.8549 0.9191 0.9957
(0.0110) | (0.0960) | (0.2899) | (0.0071)
250 1 30| 3 Both, bal 0.7644 0.8156 0.9321 0.9442

(0.1095) | (0.1110) | (0.1181) | (0.0515)
250 | 30 | 3 | Bothunbal,all | 0.6398 | 0.7707 | 0.6970 | 0.8494
(0.0889) | (0.0951) | (0.2138) | (0.0713)
250 | 30 | 3 | Both,unbalmiss | 0.6482 | 0.6728 | 0.7066 | 0.7661
(0.0511) | (0.0650) | (0.2064) | (0.1095)
250 | 30 | 3 Mult, bal 0.3950 | 0.4720 | 0.4383 | 0.4375
(0.0339) | (0.0648) | (0.0675) | (0.0517)
250 | 30 | 3 | Mult, unbal, all | 0.3862 | 04606 | 0.4380 | 0.4481
(0.0533) | (0.0670) | (0.0696) | (0.0428)
250 | 30 | 3 | Mult, unbal, miss | 0.2689 | 0.2827 | 0.3314 | 0.3099
(0.0273) | (0.0848) | (0.0352) | (0.0347)
500 | 68 | 5 Both, bal 0.4006 | 0.5859 | 0.5893 | 0.6523
(0.0560) | (0.0442) | (0.1223) | (0.0432)
500 | 68 | 5 | Both, unbal, miss | 0.4104 | 0.54412 | 0.6010 | 0.6265
(0.0373) | (0.0366) | (0.0537) | (0.0397)
300 | 40 | 7 Single 0.7348 | 0.6474 | 0.0973 | 0.7080
(0.0526) | (0.0456) | (0.0362) | (0.0453)

Unif(0,0.15)). Given profiles and slip/guess parameters, we generate the student response
matrix Y.

As we know the true underlying skill set profiles C;, we can calculate their agreement
with the clustering partitions using the Adjusted Rand Index (ARI; [7]), a common mea-
sure of agreement between two partitions. The expected value of the ARI is zero and the
maximum value is one, with larger values indicating better agreement.

Tables 1, 2, and 3 show the clustering results for the DINA model estimates, sum-
scores, and the capability matrix, respectively. In each table, N is the number of students,
J is the number of items, and K is the number of skills. The Q-matrix design describes
the O-matrix used when generating the student responses (see Section 2 for more details).
Here single indicates that there were only single skill items, both indicates that there were
both single and multiple skill items, and mult indicates that there were only multiple skill
items. Also, bal indicates that the Q-matrix had a balanced design. An unbalanced design
is denoted by unbal and all or miss shows whether all combinations were present or if some
were missing. For the DINA model estimates (Table 1), we rounded the & to 0/1 to find the
closest skill set profile. For the remaining methods in Table 1 and for all methods in Tables 2
and 3 we cluster the unrounded &;,. When using HAC and K-means, we set the number of
clusters equal to 2% as suggested by [3]. For MBC we search over an appropriate range;
MBC 2K indicates that we set the number of clusters to 2X. For each set of 20 simulations,
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Table 3: Clustering the Capability Matrix Estimates of Student Skill Knowledge
| N [ J |K | O-matrixdesign | HAC | K-means | MBC [ MBC2X |

250 1 30| 3 Single, bal 0.9910 0.8190 0.9957 0.9957
(0.0104) | (0.0835) | (0.0071) | (0.0071)
250 | 30 | 3 Both, bal 0.7644 0.7947 0.9353 0.9411

(0.1095) | (0.1056) | (0.1583) | (0.0300)
250 | 30 | 3 | Bothunbal,all | 0.7273 | 0.8082 | 0.6252 | 0.8281
(0.0867) | (0.1227) | (0.1719) | (0.1543)
250 | 30 | 3 | Both,unbal,miss | 0.6698 | 0.7390 | 0.4563 | 0.6693
(0.0813) | (0.0778) | (0.1267) | (0.1628)
250 | 30 | 3 Mult, bal 0.4045 | 04530 | 0.4586 | 0.4499
(0.0347) | (0.0508) | (0.0624) | (0.0382)
250 | 30 | 3 | Mult, unbal, all | 0.3899 | 04585 | 0.4518 | 0.4580
(0.0509) | (0.0550) | (0.0822) | (0.0589)
250 | 30 | 3 | Mult, unbal, miss | 0.2700 | 0.3638 | 0.2803 | 0.2840
(0.0291) | (0.0737) | (0.0620) | (0.0457)
500 | 68 | 5 Both, bal 0.4096 | 0.5711 | 0.5951 | 0.6647
(0.0504) | (0.0543) | (0.1284) | (0.0928)
500 | 68 | 5 | Both, unbal, miss | 0.4327 | 0.5435 | 0.5560 | 0.6291
(0.0405) | (0.0350) | (0.2027) | (0.1050)
300 | 40 | 7 Single 0.7399 | 0.6437 | 0.0906 | 0.7109
(0.0545) | (0.0402) | (0.0168) | (0.0409)

we report the median ARI and the standard deviation.

First, we examine performance differences across Q-matrix designs. The first Q-matrix
has only three skills; each skill occurs in 10 single skill items. The ARI for all three meth-
ods of estimation and all clustering methods is 1 in nearly all cases. Across the methods,
K-means has the lowest ARI. This is not surprising as we randomly select 2X = 8 observa-
tions as the starting centers. A more informed set of starting centers (i.e., the natural skill
set profiles) may lead to better performance. For the K = 3 examples, the ARI is higher
when there are only single skill items compared to when there are both single and multi-
ple skill items and only multiple skill items. The lone exception is MBC with sum-scores
(Single, bal = 0.9191, Both, bal = 0.9321). The standard deviation in this case (0.2899) is
rather large and indicates a wide range of ARI values for these 20 simulated datasets.

We now take a closer look at Q-matrices with at least some multiple skill items. We can
note that the performance of all three clustering methods is better (as indicated by a higher
ARI) when there are both single and multiple skill items in the Q-matrix, compared to only
multiple skill items (also true across all three methods of estimation). In addition, when
the O-matrix has a balanced design, as opposed to an unbalanced design, the recovery of
the true skill set profiles is better. In general, the performance of the three estimates of the
student skill knowledge is similar across the clustering methods. This similar performance
is particularly interesting since using sum-scores and the capability matrix yield large com-
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Table 4: Clustering the DINA Model Estimates of Student Skill Knowledge for N =
250, J = 30, K = 3 with Missing Response Data
‘ Q-matrix design ‘ % missing ‘ DINA ‘ HAC ‘K—means ‘ MBC ‘MBC 2K ‘

Both, bal 0 0.9793 | 0.9781 | 0.8367 | 0.8915 | 0.9632
Both, bal 10 0.4584 | 0.4690 | 0.4750 | 0.4725 | 0.4754
Both, bal 20 0.4326 | 0.4550 | 0.4581 | 0.4544 | 0.4567
Both, bal 30 0.4006 | 0.4340 | 0.4276 | 0.4267 | 0.4306
Both, bal 40 0.3513 | 0.3825 | 0.3850 | 0.3655 | 0.3681
Both, unbal, miss 0 0.9240 | 09131 | 0.7696 | 0.8811 | 0.9132
Both, unbal, miss 10 0.9084 | 0.9057 | 0.7516 | 0.8274 | 0.8009
Both, unbal, miss 20 0.8775 | 0.8651 | 0.7294 | 0.7560 | 0.7578
Both, unbal, miss 30 0.8193 | 0.8160 | 0.7256 | 0.7052 | 0.6948
Both, unbal, miss 40 0.7694 | 0.7746 | 0.7181 | 0.6515 | 0.6114

Table 5: Clustering the Sum-Score Estimates of Student Skill Knowledge for N = 250, J =
30, K = 3 with Missing Response Data
‘ Q-matrix design ‘ % missing ‘ HAC ‘ K-means ‘ MBC ‘ MBC 2% ‘

Both, bal 0 0.7644 | 0.8156 | 0.9321 | 0.9442
Both, bal 10 0.6255 | 0.7671 | 0.8280 | 0.8489
Both, bal 20 0.5000 | 0.6717 | 0.4854 | 0.7526
Both, bal 30 0.4191 | 0.5855 | 0.4131 | 0.5309
Both, bal 40 0.3168 | 0.5072 | 0.2951 | 0.3867
Both, unbal, miss 0 0.6482 | 0.6728 | 0.7066 | 0.7661
Both, unbal, miss 10 0.5744 | 0.6091 | 0.3608 | 0.6563
Both, unbal, miss 20 0.4834 | 0.5556 | 0.3264 | 0.5414
Both, unbal, miss 30 0.3686 | 0.4876 | 0.2725 | 0.3961
Both, unbal, miss 40 0.3266 | 0.4203 | 0.2514 | 0.2624

putational savings when compared to estimating the DINA model using WinBUGS (up to
700 times faster; [1]). Moreover, in this simulation study the data are generated from the
DINA model; we would expect the Bayesian estimation to perform well in this best-case
scenario. For sum-scores and the capability matrix to perform as well as, and better than in
some cases, the DINA model is noteworthy.

The above results are for student populations with complete response data. In practice,
missing responses (unanswered questions) will be ubiquitous. We chose two Q-matrix
designs with N = 250, J = 30, and K = 3 (Both, bal and Both, unbal, miss) and removed
0, 10, 20, 30, and 40% of the student responses completely at random for each of the
20 student populations. Results can be seen in Tables 4, 5, and 6. Note that the 0%
missing corresponds to the previously shown results. Again, we report the median ARI.
The standard deviations are not shown due to space limitations. They ranged from 0.03 to
0.16 and were generally ordered as DINA model (lowest), capability matrix, and sum-score
(highest).
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Table 6: Clustering the Capability Matrix Estimates of Student Skill Knowledge for N =
250, J = 30, K = 3 with Missing Response Data
‘ Q-matrix design ‘ % missing ‘ HAC ‘ K-means ‘ MBC ‘ MBC 2K ‘

Both, bal 0 0.7644 | 0.7947 | 0.9353 | 0.9411
Both, bal 10 0.6682 | 0.7894 | 0.6633 | 0.8786
Both, bal 20 0.6028 | 0.7491 | 0.5350 | 0.7655
Both, bal 30 0.6022 | 0.7141 | 0.5021 | 0.5505
Both, bal 40 0.4842 | 0.6103 | 0.3948 | 0.4086
Both, unbal, miss 0 0.6698 | 0.7390 | 0.4563 | 0.6693
Both, unbal, miss 10 0.6032 | 0.6980 | 0.4766 | 0.5473
Both, unbal, miss 20 0.5761 | 0.6629 | 0.4687 | 0.4654
Both, unbal, miss 30 0.5351 | 0.6251 | 0.4764 | 0.4775
Both, unbal, miss 40 0.5108 | 0.5658 | 0.4144 | 0.4335

In general, as the amount of missing data increases, the ARI decreases across all three
estimation methods and all methods of clustering. However, some methods show more
substantial decreases than others. When using the capability matrix, K-means shows rel-
atively stable performance for both Q-matrix designs. For the Both, unbal, miss design,
HAC and MBC also show stable performances. When using sum-scores, the performance
drops more noticeably across all clustering methods which may reflect that the capability
matrix scales for the number of questions answered while sum-scores do not. In the Both,
bal case, the performance of the capability matrix estimates is generally better than both
the DINA model estimates and the sum-scores (particularly true for K-means). For HAC,
sum-scores and the capability matrix perform similarly (both better than the DINA model
estimates). For the Both, unbal, miss case, the performance of the DINA model estimates is
better than both sum-scores and the capability matrix estimates. When using the capability
matrix estimates, K-means clustering performs best; its ARI values are only slightly lower
than those of the DINA model.

5 Conclusions

Simulated examples show that recovery of the true skill set profiles is best when only
single skill items occur. For Q-matrices with multiple skill items, recovery is improved if
there are also single skill items present. These results hold across all three clustering meth-
ods and all three estimates of student skill knowledge. In addition, we note that the more
computationally attractive capability matrix and the sum-score estimates perform similarly
to the Bayesian estimation of the DINA model.

However, when there are missing responses, the performance of the estimation proce-
dures changes. In general, the ARI values decrease as the percent of missingness increases
(across all estimation and clustering methods). When the Q-matrix has a Both, bal design,
the capability matrix estimates perform better than both the DINA model and sum-score
estimates. In the Both, unbal, miss design, the DINA model estimates perform better than



Educational Data Mining 2009

sum-scores and the capability matrix estimates.

These results can be used to guide the design of exams and tutor problems. For better
estimation of student skill knowledge, single skill items should be included for each skill.
In addition, students should be encouraged to finish all items. Whether or not it is by
design, when students use online tutors, for example, they often do not complete all the
items. In this case, it is particularly important for single skill items to be included. In the
presence of missing responses, however, care should be taken when choosing an estimation
method and a clustering method. The best choice is not obvious.

While there are benefits of using the capability matrix and/or sum-scores, we note that
if an item requires multiple skills and a student answers incorrectly, all skills required by
the item will receive a penalty, even if the student has mastered one (or more) of the skills.
In future work, we will explore the behavior of alternative estimates that better account
for multiple skill items. Possible methods could use empirical performance on single skill
items or weight by the number of skills required by the incorrectly answered item.
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Abstract. Recent research has suggested that differences between intelligent
tutor lessons predict a large amount of the variance in the prevalence of gaming
the system [4]. Within this paper, we investigate whether such differences also
predict how much students choose to go off-task, and if so, which differences
predict how much off-task behavior will occur. We utilize an enumeration of the
differences between intelligent tutor lessons, the Cognitive Tutor Lesson
Variation Space 1.1 (CTLVSI1.1), to identify 79 differences between tutor
lessons, within 20 lessons from an intelligent tutoring system for Algebra. We
utilize a machine-learned detector of off-task behavior to predict 58 students’
off-task behavior within that tutor, in each lesson. Surprisingly, the best model
predicting off-task behavior from lesson features contains only one feature:
lessons that involve equation-solving. We discuss possible explanations for this
finding, and further studies that could shed light on this relationship.

1 Introduction

What underlies students’ choices, while they use educational software? In particular, why
do students choose to game the system or go off-task, while using educational software?
Much of the research on these questions has focused on the role that stable or semi-stable
student individual differences play in driving these types of behaviors [2, 3, 8, 9]. Take,
for example, the case of gaming the system (“attempting to succeed in an interactive
learning environment by exploiting properties of the system rather than by learning the
material” [cf. 5]). Several studies have been published that attempt to explain gaming
behavior in terms of stable or semi-stable individual differences between students, such
as a student’s attitude towards mathematics or goal orientation [2, 8, 9]. These studies
have generally found statistically significant relationships. However, the relationships
found in these studies only explain 5-9% of the variance in gaming behavior (r* = 0.05 to
0.09) [2,8], a relatively low degree of explanatory power.

By contrast, [7] found that the differences between intelligent tutor lessons predict a large
proportion of the variance in gaming behavior. In an analysis of 58 students’ behavior
within 20 lessons in an intelligent tutor for algebra (corresponding to the majority of a
year’s curriculum), a combination of features of tutor lessons was found to predict 56%
of the variance in gaming behavior (r* = 0.56). In particular, lessons that incorporated
interest-increasing text into problem scenarios had significantly less gaming; lessons with
various types of ambiguity had more gaming; lessons with ineffective hints had more
gaming; and lessons based on equation-solving had less gaming. These results suggest
that it may be possible to bypass the intrusiveness and high development costs of
interactive responses to gaming [cf. 1, 4, 22] simply by altering these features of lessons,
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designing lessons with less extraneous ambiguity and more attempts to increase student
interest.

The discovery that gaming the system can be well predicted by small-scale differences in
educational software design raises the question of whether other prominent learner
behaviors are similarly associated with small-scale features of software design. In this
paper, we investigate whether small-scale differences in software design can predict
variance in off-task behavior. Off-task behavior shares many characteristics with gaming
behavior. Both behaviors have been found to be associated with poorer learning in
intelligent tutoring systems, although gaming the system’s impact on learning is both
larger and more immediate [6, 11]. Additionally, the two behaviors have each been found
to be weakly associated with some of the same student individual differences [3], in
particular negative attitudes towards computers and mathematics.

In this study, we apply a previously validated detector of off-task behavior [3] to data
obtained from the PSLC DataShop [15], representing an entire school year of use of
Cognitive Tutor Algebra, a widely used intelligent tutoring system. During the school
year, students worked through a variety of lessons on different topics. These lessons had
moderate variation in subject matter and considerable variation in design, making it
possible to observe which differences in subject matter and/or design are associated with
differences in how much off-task behavior occurs. We apply an existing taxonomy of the
differences between tutor lessons [7] to these lessons, and investigate which lesson
features are most strongly associated with off-task behavior.

2 Data and Models Applied

Data was obtained from the PSLC DataShop [15] (dataset: Algebra I 2005-2006
Hampton Only), for 58 students’ use of Cognitive Tutor Algebra during an entire school
year. The data set was composed of approximately 437,000 student transactions (entering
an answer or requesting help) in the tutor software. All of the students were enrolled in
algebra classes in one high school in the Pittsburgh suburbs. The school used Cognitive
Tutors two days a week, as part of its regular mathematics curriculum. None of the
classes were composed predominantly of gifted or special needs students. The students
were in the 9" and 10™ grades (approximately 14-16 years old).

The Cognitive Tutor Algebra curriculum involves 32 lessons, covering a complete
selection of topics in algebra, including formulating expressions for word problems,
equation solving, and algebraic function graphing. Three lessons from Cognitive Tutor
Algebra are shown in Figure 1. Data from 8 lessons was eliminated from consideration,
as taxonomy codings were not available for those lessons (these lessons were not coded
in [7], due to having limited data from those lessons available for that paper’s analyses of
interest). On average, each student completed 10.7 tutor lessons (among the set of 24
lessons considered), for a total of 619 student/lesson pairs.

12
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Figure 1. Three lessons from Cognitive Tutor Algebra. Top: The Equation-Solver. Middle: Story
Problem with Worksheet. Bottom: Function Graphing.
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To determine how often each student was off-task, in each lesson, each student’s actions
were labeled using Baker’s [3] detector of off-task behavior. The detector was developed
using data from 429 students’ classroom use of three lessons from an intelligent tutor on
middle school mathematics. Applying this detector makes it tractable to study off-task
behavior across a wide variety of tutor lessons. By contrast, other well-known methods
are intractable — for instance, conducting quantitative field observations on a similar
number of tutor lesssons and students would involve sending out two or more research
assistants to classrooms for an entire year.

The detector, under cross-validation, achieved a correlation of 0.55 to field observations
of off-task behavior — hence, it can be considered reasonably reliable for these purposes.
The detector is also able to distinguish off-task behavior from on-task conversation, by
looking at the student actions that occur immediately before and after a seemingly idle
pause. We show the model that predicts off-task behavior within the detector in Table 1.
The detector makes a prediction as to whether each action is off-task, and then aggregates
across actions to indicate what proportion of student actions was off-task (or,
alternatively, what proportion of student time was off-task). Full details on this detector
are available in [3]. Two features (F3 and F6) involved features that were not available
for this data set (string and generally-known). However, F3 and F6 together accounted
for only 4.4% of the cross-validated correlation accounted for by this model [3] — hence,
this model can still be expected to be accurate even in the absence of these features.

Table 1. The model of off-task behavior (OT) used in this paper, from [3]. In all cases, paraml is
multiplied by param2, and then multiplied by value. Then the six features are added together. If the
sum is greater than 0.5, the action is considered to be off-task. Features that were not applicable to
the current data set are indicated in gray. ‘“Pknowretro”, a feature found in many behavior
detectors, refers to the probability the student knew the skill if the action was the first opportunity to
practice the current skill on the current problem step, and is -1 otherwise.

param 1 param 2 value Interpretation

OT: Very fast actions immediately
F1 | timelast3SD timelast5SD -0.08 | before or after very slow actions

OT: Extremely fast actions or
F2 | timeSD timeSD 0.013 | extremely slow actions

OT: Less likely on well-known string-
input steps

OT: More likely when inputting a

F3 | string pknowretro -0.36 | string after error

F4 | notfirstattempt | recent8help -0.38 | Not OT: Asking for a lot of help

OT: Two errors or help-requests in a

row
Not OT: Errors or help requests on
F5 | notright pknowretro -0.16 | skills the student has already mastered
OT: Indicated by many errors on skills
generally- students generally know prior to
F6 | pctwrong known 0.04 | starting this lesson

14
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Table 2. The 79 features of the Cognitive Tutor Lesson Variation Space (CTLVSI1.1) used in study.
Features captured using data mining methods (as opposed to hand-coding) marked with *.

Difficulty, Complexity of Material, and Time-Consumingness

1*. Avg. % error

2. Lesson consists solely of review of material encountered in
previous lessons

3%*. Avg. probability that student will learn a skill at each
opportunity to practice skill [cf. 12]

4*. Avg. initial probability that student will know a skill when
starting tutor [cf. 12]

5. Avg. # of “distractor” values per problem

6. % of problems where “distractor” values given

7. Max number of mathematical operators needed to give correct
answer on any step in lesson

8. Maximum number of mathematical operators mentioned in
hint on any step in lesson

9. Intermediate calculations must be done outside of software
(mentally or on paper) for some problem steps (ever occurs)

10. % of hints that discuss intermediate calculations that must
be done outside of software

11%*. Total number of skills in lesson

12*. Avg. time per problem step

13. % of problem statements that incorporate multiple
representations (ex: diagram and text)

14. % of problem statements that use same numeric value for
two constructs

15. Avg. number of distinct/separable questions or problem-
solving tasks per problem

16. Maximum number of distinct/separable questions or
problem-solving tasks in any problem

17. Avg. # of numbers manipulated per step

18*. Avg. # of times each skill repeated per problem

19*. Number of problems in lesson

20*. Avg. time spent in lesson

21. Avg. number of problem steps per problem

22. Minimum number of answers or interface actions required
to complete problem

Quality of Help Features

23*. Avg. amount that reading on-demand hints improves
performance on future opportunities to use skill [cf. 10]

24*. Avg. Flesch-Kincaid Grade Reading Level [16] of hints

25. % of hints using inductive support, going from example to
abstract concept/principle

26. % of hints that explicitly explain concepts or principles
underlying current problem-solving step

27. % of hints that explicitly refer to abstract principles

28. On average, # of hints must student request before concrete
features of problems are discussed

29. Avg. number of hint messages per hint sequence that orient
student to math sub-goal

30. % of hints that explicitly refer to scenario content (instead
of solely math constructs)

31. % of hint sequences that use terminology specific to this
software

32. % of hint messages which refer solely to interface features

33. % hint messages that teacher can’t understand

34. % of hint messages with complex noun phrases

35. % of skills where the only hint message explicitly tells
student what to do

Usability

36. First problem step in first problem of lesson is either clearly
indicated, or follows established convention (such as top-left cell
in worksheet)

37. % of steps where student must change a value in a cell that
was previously treated as correct (example: self-detection of
errors)

38. After student completes step, system indicates where in
interface next action should occur

39. % of steps where it is necessary to request hint to figure out
what to do next

40. Not immediately apparent what icons in toolbar mean

41. Screen cluttered with interface widgets; difficult to
determine where to enter answers

42. Problem-solving task is not immediately clear

43. Format of answer changes between problem steps without
clear indication

44. If student has skipped step, and asks for hint, hints refer to
skipped step without explicitly highlighting in interface (ever
seen)

45. If student has skipped step, and asks for hint, skipped step is
explicitly highlighted in interface (ever seen)

Relevance and Interestingness

46. % of problems which appear to use real data

47. % of problem statements with story content

48. % of problem statements with scenarios relevant to potential
student careers

49. % of problem statements with scenarios relevant to
students’ current daily life

50. % of problem statements which involve fantasy (example:
being a rock star)

51. % of problem statements which involve concrete details
unfamiliar students (example: dog sleds)

52. % of problem statements which involve concrete
people/places/things

53. % of problem statements with text not directly related to
problem-solving task

54. Avg. number of person proper names in problem statements
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Aspects of “buggy’’ messages notifying student why action was incorrect

55. % of buggy messages that indicate concept student 56. % of buggy messages that indicate how student’s action
demonstrated misconception in was result of procedural error
57. % of buggy messages that refer solely to interface action 58. Buggy messages given by icon, which can be hovered over

to receive buggy message

Design Choices Which Make It Easier to Game the System

59. % of multiple-choice steps 60. Avg. number of choices in multiple-choice
61. % of hint sequences with final hint that explicitly tells student 62. Hint gives directional feedback (example: “try a larger
what the answer is, but not what/how to enter it in the tutor number”) (ever seen)
software

63. Avg. number of feasible answers for each problem step

Meta-Cognition and Complex Conceptual Thinking
(or features that make them easy to avoid)

64. Student is prompted to give self-explanations 65. Hints ever give explicit metacognitive advice
66. % of problem statements that use common word to indicate 67. % of problem statements that indicate math operation with
mathematical operation to use (example: “increase”) uncommon terminology (‘“pounds below normal” for
subtraction)

68. % of problem statements that explicitly tell student which
math operation to use (“add”)

Software Bugs/Implementation Flaws (generally rare)

69. % of problems where grammatical error is found in problem 70. Reference in problem statement to interface component that

statement does not exist (ever occurs)
71. Student can advance to new problem despite still visible 72. Hint recommends student do something which is incorrect
errors or non-optimal (ever occurs)
73. % of problem steps where hints are unavailable
Miscellaneous
74. Hint requests that student perform some action 75*. Avg. length of text in popup widgets
76. Value of answer is very large (over four significant digits) 77. % of problem statements which include question or
(ever seen) imperative
78. Student selects action from menu, tutor software performs 79. Lesson is an equation-solver lesson

action (as opposed to typing in answers, or direct manipulation)

Each tutor lesson’s attributes was represented using the Cognitive Tutor Lesson Variation
Space version 1.1 (CTLVS1.1) [7], an enumeration of how Cognitive Tutor lessons can
differ from one another. The CTLVSI1.1 was developed by a diverse design team,
including cognitive psychologists, educational designers, a mathematics teacher, and
EDM researchers. The CTLVS1.1, shown in Table 2, consists of 79 features for how
cognitive tutors differ from each other. The CTLVS1.1 was labeled with reference to the
24 lessons studied in this paper by a combination of educational data mining and hand-
coding by the educational designer and mathematics teacher.

3 Analysis Methods and Results

The goal of our analyses was to determine how well each difference in lesson features
predicts how much students will go off-task in a specific lesson. To this end, we
combined the labels of the CTLVSI1.1 features for each of the 22 lessons in Cognitive
Tutor Algebra, and the assessments of how often each of the 58 students in the data set
were off-task in each of the 22 lessons.

Our first step in conducting the analysis was to determine if the 79 features of the
CTLVSI.1 grouped into a smaller set of factors. We empirically grouped the 79 features
of the CTLVSI.1 into 6 factors, using the implementation of Principal Component
Analysis (PCA) given in SPSS. These same 6 factors were previously successful in
discovering a factor that was statistically significantly associated with gaming the system

[7].
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We analyzed whether the correlation between any of these 6 factors and the frequency of
off-task behavior was significant. However, none of the factors was statistically
significantly associated with off-task behavior — the closest factor to significance had
F(1,21)=0.37, p=0.55.

Taking the 79 features individually, only two were found to be statistically significantly
associated with the choice to go off-task. Using an (overly conservative) Bonferroni
adjustment [20] to control for the number of statistical tests conducted, only one feature
was still found to be statistically significant. This feature was whether the lesson was an
equation-solver lesson (as opposed to other types of lessons, such as story problems). An
equation-solver lesson is shown at the top of Figure 1. Students were statistically
significantly less likely to go off-task within equation-solver lessons, * =0.55, F(1,
21)=27.29, p<0.001, Bonferroni adjusted p<0.001.

To put this relationship into better context, we can look at the proportion of time students
spent off-task in equation-solver lessons as compared to other lessons. On average,
students spent 4.4% of their time off-task within the equation-solver lessons, much lower
than is generally seen in intelligent tutor classrooms [5,6] or, for that matter, in traditional
classrooms [cf.17, 18]. By contrast, students spent 14.1% of their time off-task within the
other lessons, a proportion of time-on-task which is much more in line with previous
observations. The difference in time spent per type of lesson is, as would be expected,
statistically significant, t(22)=4.48, p<0.001.

The other feature found to be statistically significantly associated with off-task behavior,
prior to the Bonferroni adjustment, was the proportion of hints that are solely bottom-out
hints (more bottom-out-only-hints, less off-task behavior). However, a model including
both of these two features was not statistically significantly better than the model that
only considered whether the lesson was an equation-solver lesson, F(1, 21)=0.73, p=0.40.

4 Discussion and Conclusions

The results found here suggest that differences between lessons explain a large proportion
of the variance in how much off-task behavior occurs, just as with gaming the system.
However, the nature of the models found is quite different. Whereas the model that best
explains how much gaming occurs was a complex set of fine-grained features [7], the
model that best explains off-task behavior consists of a single, very coarse-grained
difference. This leaves us with a problem of interpretation. Why were students off-task so
much less within these equation-solver lessons?

One hypothesis is that there is some combination of features distinct to equation-solver
lessons that produce less off-task behavior, but only when the full combination is
encountered. For example, it is possible that the combination of features found in the
equation-solver lessons (such as less complex hints, in combination with direct
interaction with the equations, in problems that are generally shorter), combine to
produce a state of very positive continued engagement (e.g. flow [13]) that precludes off-
task behavior. It may be that this positive engagement is promoted by a specific
combination of features only found in these lessons, explaining why off-task behavior
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was not associated with any of the finer-grained features in the CTLVSI1.1, once the
coarser feature of whether the lesson used the equation-solver was included. Relatedly, it
might be that the task of equation-solving is somehow more engaging, in and of itself,
than other mathematical problem-solving tasks, leading students to engage in a lower
degree of off-task behavior.

A second hypothesis is that teacher behavior causes the lower off-task behavior within
the equation-solver lessons. A conversation with a colleague with school teaching
experience indicated that teachers in the United States are often particularly worried
about students’ performance on equation-solving on state standardized exams (personal
communication, L.A. Sudol). This concern may lead teachers to monitor a student more
closely, if the student is working through an equation-solver lesson. This hypothesis
could be tested through observing teachers’ behavior with quantitative field observations
[cf. 5], as students use either equation-solver lessons or other lessons. It is worth noting
that this hypothesis may also help explain the lower incidence of gaming the system in
equation-solving lessons [e.g. 7].

Determining which of these hypotheses best explains the lower incidence of off-task
behavior in equation-solver lessons has the potential to help us understand this behavior
better. In turn, this knowledge has the potential to aid us in developing learning software
that students engage with to a greater degree. In doing so, it is essential to avoid
decreasing off-task behavior in ways that could increase the prevalence of other
behaviors associated with poorer learning, such as gaming the system. It is also essential
to avoid reducing off-task behavior in ways that would make instruction generally less
effective — a potential danger in many visions of educational games in the classroom.

More broadly, we believe that the methods used in this paper point to new opportunities
for the field of educational data mining. The creation of taxonomies such as the
CTLVSI.1 will enable an increasing number of data mining analyses about how
differences in educational software concretely influence student behavior. In turn, these
analyses can inform a deeper scientific understanding of the interactions between
students and educational software.
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Abstract: It has been recognized that in order to drive Intelligent Tutoring
Systems (ITSs) into mainstream use by the teaching community, it is essential to
support teachers through the entire ITS process: Design, Development,
Deployment, Reflection and Adaptation. Although research has been done on
supporting teachers through design to deployment of ITSs, there is surprisingly
little discussion about support for teachers’ Reflection - the ability to draw
conclusions from ITS usage, and Adaptation - adapting the content to better
meet the needs of students. We describe our work on developing analysis tools
and methodologies that support reflection and adaptation by teachers. The work
was done in the context of helping teachers understand student’s behavior in
Adaptive Tutorials by post-analysis of the system’s data-logs. We used a hybrid
solution — part of the data-mining effort is teacher driven and part is automated.
We tested our approach by comparing the results of expert analysis of two
Adaptive Tutorials with and without an automated Refinement Suggestion Tool,
and found it to be a useful teacher’s aid. By using this tool, teachers act as
‘action researchers’, confirming or disproving their hypotheses about the best
way to use ITS technology.

1 Introduction

Intelligent Tutoring Systems (ITSs) can dramatically increase learners’ comprehension
by adapting the learning activity to the learners’ needs, based on an intelligent assessment
of their level of knowledge. This is the “Dream of ITS” (cf. “The Dream of AI”) — that
one day a system will be “smart” enough to teach better than human teachers. Whether
this dream is to become a reality is arguable, even as ITS technologies are being
intensively researched by the scientific community. In recent years, it has been
recognized that whether or not the dream is realized, we must make ITSs as widely
available as traditional web based educational systems. However, this is not a
straightforward task, partially due to the sheer amount of content existing in traditional
web based systems, compared with the relatively small amount of specialized content
existing in ITSs[4], and also due to the complex nature of ITS’s and their relative
inaccessibility to teachers. In order to address this issue, teachers require better support
through the entire ITS process: Design, Development, Deployment, Reflection and
Adaptation.

To-date, research on supporting teachers in the ITS process has been focused on aiding
teachers to author intelligent content, mainly through the advent of ITS authoring
tools[10], but it is now clear that the ITS design paradigm needs to be updated. A new
design paradigm offers teachers a different place in the ITS process; while the core
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authoring is in the hands of well-prepared design teams, teachers can extend the system
and fine tune it to meet their specific needs[4].

This shift in the teacher’s role is also acknowledged in the work of Diana Laurillard who
proposed the Conversational Framework for the effective use of educational
technology[6]. The Conversational Framework (CF) can be considered both a learning
theory and a practical framework for designing educational environments. It models the
interaction between teachers and learners as a stepwise “conversation” across four
dimensions: discussion, adaptation, interaction and reflection. In [7], Laurillard describes
the role of the teacher as an “action researcher”, “collaborating to produce their own
development of knowledge about teaching with technology”. However, she also argues
that support for reflection and adaptation is severely lacking with regards to eLearning
content. This is because teachers rarely have the ability to reflect on (analyze and
conclude) and adapt (change or edit) software based instructional material. The argument
is even stronger for intelligent content offered by specialized systems such as ITSs.

This paper presents work that aims to support teachers through the process of the
reflection and adaptation of Adaptive Tutorials (AT’s) running on the Adaptive
eLearning Platform (AeLP)[2]. An important challenge we faced in analyzing the
Adaptive Tutorials in the AeLP was how to develop data-mining tools for the purpose of
aiding teachers, without becoming too domain-specific or overwhelming them with a
large number of association rules or classifiers which are difficult to understand. In
particular, we aim to ensure the tool is easy to use and do not want to cognitively
overload the teachers[14]. Moreover, students’ interaction in the AeLP can vary
dramatically between different AT’s. Our contribution is through developing a
refinement and adaptation strategy that can scale across different domains. We achieve
this though a hybrid approach — user-driven and data-driven. The user-driven approach
manifests itself in the development of an interactive analysis and discovery tool called the
Adaptive Tutorial Analyzer (ATA). Teachers use the ATA for the purpose of analyzing
students’ performance in Adaptive Tutorials. The data-driven approach manifests itself in
the development of a Refinement Suggestion Panel that draws teachers’ attentions to
patterns in the data that requires their attention. In this paper we show how both of these
strategies complement each other.

2 Related work

Analyzing student behavior in an ITS is a complex problem, and the task of making sense
of the data in ITS’s logs is within the domain of educational data-mining[13]. Generally
speaking, educational data mining is a data-driven field motivated to augment human-
programmed knowledge, e.g. to ease the modeling of the correct way a problem should
be solved ([8]), or to accurately predict a student’s performance based on analysis of
previous years’ logs ([9]). However, some researchers previously highlighted the fact that
patterns found in educational systems’ data-sets are only useful if interpreted in the
pedagogical context of the educational activity. In the work of [5] the researchers used an
iterative process of discovery and interpretation with the goal of making sense of patterns
discovered by data-mining algorithms they used.
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We followed similar reasoning: patterns in the data-logs of Adaptive Tutorials are
senseless without a teacher’s pedagogical and domain specific insights. However, unlike
[5] who rely solemnly on analysis of click-streams, the AeLLP logs the entire system’s
internal state per each student’s ‘check’ event (student pressing the ‘check’ button). As
such, the data-logs are extremely multidimensional, up-to hundreds of attribute-values
per student action. Furthermore, the system’s snapshot depends on the specifics of the
Virtual Apparatus (VA) that was used for the Adaptive Tutorial (see [2] for a description
of how Adaptive Tutorials are constructed from Virtual Apparatuses), and as such we
need tools that are domain independent but that can be utilized for the purpose of domain
specific inquiry.

Another comprehensive study on analyzing ITS’s data-logs was carried by [11] where
data-mining algorithms were used in order to analyze the logs of a Constraint-Based ITS
called SQL-Tutor. The researchers used a variety of tools such as WEKA and SQL in
order to carry out multiple analysis tasks that resulted in some refinement suggestion to
their system. One difference in our work is that the AeLP is a platform on which 10
different adaptive tutorials, each equivalent to SQL-Tutor in its scope and depth, are
currently running. Our approach is thus to enable teachers to conduct analysis tasks,
rather than specialist data-mining researchers. Furthermore, while the AeLLP does use
constructs analogues to Constraints (called trap-states), for the authoring of adaptive
activities, it also uses solution traces, that are closer to Model Tracing based ITS’s. This
suggests that a richer knowledge representation is required for automated analysis.

Work on employing mining and visualization in order to analyze students’ trails in a web-
based educational system is also discussed in [12]. The data-set is again a navigation
pattern or a “click-stream” and the researchers’ approach was to interpret the student’s
navigation as a graph — considering each hypertext page as a node and transition between
pages as edges. The tool is meant to be used as an aid for teachers to better understand
student navigation. While similar to our concept to the AT-Analyzer, our efforts differ
again in that the trails, or traces we are concerned with are not simply HTML pages
requested, but traces through an entire solution state-space within an Adaptive Tutorial
(see [3] for detailed explanation).

3 The Adaptive eLearning Platform

The Adaptive elLearning Platform (AeLP) is a web-based implementation of Virtual
Apparatus Framework for eLearning content development[2]. The AeLP is used for
authoring Adaptive Tutorials, deploying them to students or into LMSs, monitoring
student progress and analyzing student behavior. The AeLP has been fielded since 2006
at the University of New South Wales, where Adaptive Tutorials developed using the
AeLP have been incorporated into the syllabi of 10 major courses (ranging between 50 to
600 students per semester), and are accessed by over 2000 students per semester.

From a pedagogical point of view, AT’s are similar in nature to teaching laboratory
activities and are analogous to the concept of Tutorial Simulations as described in [6].
AT’s exhibit three levels of adaptivity: students experience adaptive feedback with
remediation targeted to their intrinsic misconceptions, while their activities are also
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sequenced adaptively based on performance. The third level of adaptivity is content
adaptation through analysis and reflection. Teachers are provided with analysis tools that
enable reflection and adaptation of their content. By analyzing students’ behavior,
teachers can refine and adapt their content, to better meet the needs of their students, e.g.:
changing questions, adding new adaptive feedback or changing the sequence of activities.
The work described in this paper concerns development of tools and processes to better
facilitate this level of adaptation.

4 User-Driven and Data-Driven Analysis Strategy

We presented our work on the AT-Analyzer in [3]. The analysis of adaptive tutorials is
always performed with the purpose of refining and improving them for the next time they
run. Teachers perform analysis on past AT-Sessions (instances of running an AT on a
group of students), while the changes are saved to the next AT session. In that sense we
support the Conversational Framework notion of teachers acting as “action researchers”,
interested in affirming or disproving their hypotheses regarding their content and its
effect on learners[7]. Based on their analysis, teachers then need to be able to revise and
change - to adapt - their content.

4.1 The Interaction-Snapshot Data Log

For each student interaction event, the AeLLP stores a student-identifiable, time-stamped
snapshot of the entire system’s inspectable state-space. This state-space contains generic
AeLP properties (e.g. session.attemptNumber, or inputPanel.selectedChoice) and the
entire internal state the VA is in (e.g. VA.propertyA and VA.propertyB). The combined set
of attribute-values is the student’s Interaction-Snapshot-Vector. In addition to the
interaction snapshot, the data also contains a trap-state ID. This ID is a unique identifier
of the trap-state that was fired when processing the student’s interaction. This trap-state
can either be “correct” thus allowing the student to progress in their activity, or it could
be an error-state, which contains some feedback to be shown to the student. In this way,
the log database contains not only what the students were doing, but also the system’s
decision over their interactions.

4.2 An Example Adaptive Tutorial

As an example, consider an Adaptive Tutorial that was developed for a 1st year course in
Solid Mechanics: the Bridge Inspection Simulator [Figure 1]. This AT features a bridge
simulation, in which students can ‘“drive” a car on a 3 section bridge. Students can
position the car in different locations on the bridge sections, and take load and shear
stress measurements on the bridge’s poles and cables using virtual sensors. Here is an
illustrative example question in this Adaptive Tutorial: “A second car C2 of mass m2 is
positioned on section C (right hand side cantilever) of the bridge at x=250m. Position
your car C1 of mass ml on section A (left hand side cantilever) such that the tension on
both sections’ cables is the same. Enter the tension in Newtons in the input panel.” The
correct trap-state is defined as: carl.x = 60 AND userlnput = 60. The teacher then
defines an error trap-state that targets a familiar misconception. For example if a student
positions the car at carl.x = 50, the teacher knows that they answered under the false
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statement added to the previous state. For example, in state 2, the statement ~a v d is the
next “step” in the problem, however, since it is an error detected by the software, this
statement is deleted and the problem is returned to state 1.

4.2 Utility Process

If our data are labeled, we simply connect all valid solutions to a synthetic goal state.
However, when goal states are unknown, we need a way to label or measure correct
attempts. Our proposed utility metric is one way that assumes that frequent features are
important in the problem solution. From our 523 attempts, we extracted 50 unique
statements (including 3 given statements) and calculated their frequencies. A partial
sample of the statement-attempts matrix is shown in Table 2. Note that only the first three
attempts and only those statements appearing in those three attempts are shown. The
complete statements-attempts matrix would contain all 50 statements in rows and all 523
attempts in the columns. To determine statement frequency, we sum each column.

Table 2. Sample matrix showing the occurrence of elements in student solution attempts.

Terms
a b c d -(a d) a”-d a b -d -C b -c
Attempt 1 1 1 1 1 1 1 1 1 1
Attempt 2 1 1 1 0 0 1 1 1 1
Attempt 3 1 1 1 0 0 1 0 0

We then graphed the frequency of each statement, and the frequencies of statements
(number 1-47) with more than 1 usage are shown in Figure 2. Statements 1-22 occurred
only once in the data, while statements 43-47 occur in over 370 unique student attempts.
Since there is variation in correct solutions, we set a low threshold frequency of 8
attempts for statements we might consider “useful” in a proof, and this is true for
statements 29-47 and higher. A logic instructor verified that all the statements 29-47could
be expected to occur in correct student solutions, while those with fewer were not as
useful. The threshold value could be chosen automatically using the frequency profile.
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Next we calculate the initial values for MDP states. For the possible goal states (valid
terminal states), the initial value was a sum of the individual scores given to the
component statements. Each statement score was +3 if its frequency was above the
threshold and was -1 for those below. Error states received a value of -2, and all other
states started at zero. Finally, after the initial values were set we ran a value iteration
algorithm until the state values stabilized. Note that during value iteration, a -1
transaction cost was associated with each action taken.

4.3 Comparing Utility Method to MDP Method

We use an MDP along with its state values to generate hints that provide students with
details of the best next state reachable from their current state [3]. To compare the utility
method to our traditional MDP method we compared the effects of state values on the
choice of the “best” next state. Both methods create the same 821 states, of which 384
were valid, non-error states. From the valid states, 180 states had more than one action
resulting in new state. These 180 states are the ones that we focused on since these are the
only states that could lead to different hints between the two methods. Comparing the two
methods, they agree on the next best state in 163 states out of 180 (90.56%). For the
remaining 17 states where the two methods disagreed, experts identified 4 states where
the MDP method identified the better choice, 9 states where the utility method identified
the better choice, and 4 states where the methods were essentially equivalent. These 17
states can be seen in Table 3, with the highlighted cells marking the expert choice.

Table 3. States where the methods disagree (17 total states)

# of MDP Utility  Utility
State  State Description Possible next MDPadded MDP Next added  Utility
Actions  State Statement Value State Stmt Value
1 | a>b,c>d,-(a>d) 14 53 | -d>-c 49.91 2 | -(-a+d) 10.57
2 | a>b,c>d,-(a>d),-(-a+d) 9 238 | b 98.00 579 | (a*-d) 14.00
3 | a>b,c>d,-(a>d),-(-a+d),a*-d 8 310 | -(a*-b) 93.00 310 | -(a*-b) 29.00
4 | a>b,c>d,-(a>d),-(-a+d),a*-d,b 4 5| ¢ 87.72 119 | -d>-c 38.74
7 | a>b,c>d,-(a>d),-a+b 6 780 | -d>-c 29.00 780 | -d>-c 18.00
8 | a>b,c>d,-(a>d),-a+b,-c+d 2 599 | b+-c 99.00 10 | -(-a+d) 18.02
19 | a>b,c>d,-(a>d),-(-d>-a) 2 20 | -(d+-a) 27.13 274 | a*-d 7.67
36 | a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d 2 170 | ¢ 24.33 186 | b 6.04
53 | a>b,c>d,-(a>d),-d>-c 5 460 | -(-a+d) 96.00 684 | -b>-a 21.00
82 | a>b,c>d,-(a>d),(a*-d),c 3 84 | b 99.00 320 | -(a*-b) 14.00
91 | a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c 3 92 | (a*-d)>(b*-c) 99.00 473 | b 19.33
119 | a>b,c>d,-(a>d),(-a+d),a*-d,b,-d>-c 3] 773 ] c+d 98.00 120 | < 4271
156 | a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b 2 208 | -d>-c 98.00 423 | b 29.60
228 | a>b,c>d,-(a>d),a*-d,-d>-c 2 288 | -c 76.20 619 | b 14.00
333 | a>b,c>d,-(a>d),a*-d,-c+d 2 334 | -at+b 99.00 785 | ¢ 19.00
337 | a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,b 2 646 | -c+d 61.67 339 | 20.20
522 | a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c+d,-d>-c 2 766 | -c 99.00 523 | -c+d 30.00

These results show that the unsupervised utility metric does at least as good a job as the
traditional MDP method in determining state values even when it is not known if the
student attempt was successful. In all cases, the hints that would be delivered with either
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method would be helpful and appropriate. We believe that the utility metric provides a
strong way to bias our hint selection toward statements derived by a majority of students,
which may give students hints at a more appropriate level.

Before we derived the utility metric presented here, we considered modifying MDP
values by combining them in a weighted sum with a utility factor after value iteration had
been completed. In our first attempt to integrate frequency and usefulness into a single
metric, we analyzed all of our attempts to find derived statements that were necessary to
complete the proof, by doing a recursive search for reference lines starting from the
conclusion back through a student’s proof. For each attempt, this “used again” value was
set to 1 if a derived statement could be reached backward from the goal, and zero
otherwise. We summed the total times a statement was used again, and compared this
with the total times a statement occurred in attempts. Table 4 shows the comparison of
the frequency and used again values for all statements where used again was more than 1.
The values have no real correlation, but most items that were used again had high (>7)
frequencies, so we decided that frequency was a relatively good indictor of usefulness in
the logic proof domain. The “used again” calculation is possible in the logic domain
because students must provide a justification for the current statement using rules and
references to prior statements. In other domains, this may not be possible but we believe
that frequency of occurrence in student solutions indicates that a step is either needed, or
is a very common step that will only skew state values in a consistent way.

Table 4. Comparison of frequency and used again

Statement Number Statement Frequency Used Again
30 (a+c)>(b+d) 8 2
31 -(a*c)+(b*d) 9 2
32 -(d+-a) 9 7
33 (a*-d)>(b*-c) 10 10
34 -(-d>-a) 15 7
35 -b>-a 16 5
36 -(c*-d) 17 6
37 (a*c)>(b*d) 20 4
38 -(a*-b) 23 8
39 (a*-d) 53 44
40 -d>-c 93 71
41 -a+b 145 69
42 -c+d 155 80
43 -(-a+d) 334 300
44 -C 367 344

5 Conclusion and Future Work

The most important feature of the MDP method is the ability to assign a “value” to the
states. This allows the tutor to identify the action that will lead to the next state with the
highest value. In this research we have shown that the utility metric that assigns values to
terminal states based on the component steps in the state can be used to achieve hint-
source decisions as one that assigns a single value to all goal states.
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The main contribution of this paper is to show how this new utility metric can be used to
generate MDP values based on features of student solution attempts. Our results show
that the utility metric could be used to achieve equivalent or better hints than our prior
single-goal MDP approach. This is significant because the utility metric does not require
a known goal state, so it can be applied in domains where the correctness of the student
attempts is unknown, or difficult or costly to compute. We believe that this utility metric
combined with our MDP method can be used to generate hints for a computer
programming tutor. In this domain, it is difficult to say that a program is complete, but it
is possible to say whether specific features are represented. The method of using a term-
document matrix to determine utility could also be extended into using more complicated
LSI techniques which would be a natural fit for tutors using textual answers such as essay
response questions. Text based answers are prevalent in legal reasoning and medical
diagnosis tutors.

In our future work, we plan to construct and compare traditional and utility-based MDPs
for other proofs and for student work in other domains. We also plan to analyze our logic
tutor hint data to see if the utility method would result in different hints. This will give an
indication of how much the utility technique is needed for our logic tutor. We also plan to
analyze log data compiled from a C++ programming course to determine what kind of
features we might extract and how well we can calculate the utility of those features.
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Abstract. One of the main problems faced by university students is to take the
right decision in relation to their academic itinerary based on available
information (for example courses, schedules, sections, classrooms and
professors). In this context, this work proposes the use of a recommendation
system based on data mining techniques to help students to take decisions on
their academic itineraries. More specifically, it provides support for the student
to better choose how many and which courses to enrol on, having as basis the
experience of previous students with similar academic achievements. For this
purpose, we have analyzed real data corresponding to seven years of student
enrolment at the School of System Engineering at Universidad de Lima. Based
on this analysis, a recommendation system was developed.

1.-Introduction

A university curriculum is generally flexible. The study program to obtain a university
degree is conformed by several courses, which are distributed in academic terms. Prior to
the beginning of each term, the student should enrol on one or more courses of which
some are compulsory and other optional, corresponding to the period according to his/her
progress; the succession of courses enrolled in each term made by a student during his/her
career is called the student’s academic itinerary. An academic itinerary is successful
when the student, after realising his/her successive enrolments, obtains good results in
each enrolled courses, allowing thus to finish him with his/her career in the exact time
and with good results.

In this work the case of the School of System Engineering at Universidad de Lima was
analyzed. In this institution, enrolment is done through a Web system. Even though
students with better academic performance have priority on choosing groups, there are
enough vacancies for all the students. In this sense, students can enrol on some or in all
the courses available for his/her study plan or curriculum (a course is available for a
student when he/she satisfied all the requirements for enrolment and is able to take the
course).

The enrolment of a student in a course only depends on his/her decision. Previously, the
student can require advice from a professor with experience, in order to know, based on
his/her academic record, how many and which of the available courses he/she should
enrol on. Nevertheless, students rarely require these advices from professors; most of the
time the enrolment is based only on the student experience and on the information
available.
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However, many students do not have enough experience for taking enrolment decisions,
as they do not know to associate time, effort and intellectual abilities required to
successfully culminate each course. Many times the choosing criteria are closely related
to the time required to finish the studies, mainly due to students’ maturity. Certainly, the
university offers the required quantitative information (available courses, sections,
classrooms and professors), but qualitative information (implicit information regarding
the experience of previous students) is lost.

Collaborative recommendation systems are agents that suggest options [4] for the user to
choose among them. They are based on the idea that individuals with approximately the
same profile generally select and/or prefer the same things. The systems are highly
accepted and offer good outcomes for a large number of applications.

In the education environment, a recommendation system is an intelligent agent that
suggests different alternatives to students, having as starting point previous actions from
other students with approximately the same characteristics, such as academic
performance and other personal information. It is known that before taking a course, the
student have to enrol on the course; the most notorious of this process is not enrolment
itself, but the previous decision that has to be taken, mainly related to how many and
which course are going to be taken. In this work, we show a collaborative
recommendation system based on data mining techniques [7] applied to the educational
environment. The aim of this work is to offer students key elements to take better
decisions in the enrolment process, using as basis the academic performance of other
students with similar profiles, in order to obtain good results in each courses pertaining to
its academic itinerary.

For this work we had used data of enrolments since 2002. The data is composed of
demographic information of each student, enrolment in courses, grades obtained, number
of courses taken at each academic term, average grade and cumulative grade per
academic term. After filtering and cleaning the data, we applied the learning algorithm C
4.5[13], obtaining rules that are used for the system to suggest the student if his/her
enrolment in certain course has good probabilities of success or not [17]. With this
information, students will have a supporting tool that will help them taking the best
decisions previous to their enrolment.

Evaluations made on the performance of the rules used by the recommender system show
that they are expected to predict correctly student results in approximately 80% of the
cases.

The rest of this paper is organized as follows: section 2 gives an overview of related
works applying data mining in education environments. In section 3 we describe the
recommendation systems and their relation with data mining techniques. In section 4 we
had described data processing. In section 5 we explain the sequence of experiments
required for this domain. Section 6 shows the analysis of results. Finally, section 7
outlines the conclusions and future work.
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2.-Related Work

Data mining techniques are useful when huge amounts of data have to be classified and
analyzed [9]. Nowadays, it is a very common situation in many scenarios, such as web
information exploitation [16]. In the last years, a number of works have focused on the
use of data mining techniques in the context of educational environment [14]. The most
widespread techniques are: classification algorithms [3] and association rules [2].
Although the interest for using data mining in this context is growing, little work has been
done regarding the use of these techniques in education.

The use of data mining is more common in educational environments based on e-
Learning, for instance Educational Adaptive Hypermedia (EAH) courses. These
techniques are used to discover the patterns used by students in web courses, thus helping
professors and students to optimize the use of such systems. In this sense [5] these
techniques support the improvement of EAH courses, applying decision tree analysis,
finding the most relevant branches of the tree afterwards. These branches are presented to
the professor in order to improve the course design.

Many authors have also researched the application of data mining techniques to
Recommender Systems. In [1], several examples where data mining techniques are used
to learn a user model (based on previous ratings) and classify unseen items are explained.
Recommendation systems link users with items [15], associating the content of the
recommended item or opinion of other individuals with the actions or opinions of the
original users of the system. Recommendation techniques are classified in three different
categories [12]: Rule-based Filtering System, Content-filtering System and Collaborative
Filtering System.

Many and diverse algorithms can be applied to recommendation systems [1]. The Rule-
based Filtering Systems are based on classic filtering techniques, which are information
search and retrieve. Differently, collaborative filtering systems use classification [3],
clustering [11], association [2] and sequential patterns [10] to discover new and
interesting models that can help to suggest recommendations based on different user
profiles. These systems used for educational environments has been used based on
decision making have had little research or development as means to help students in
taking decisions. Our system includes courses taken by the students, their grades, the
registered courses in the semester, and the grade point average before registering in the
course. Data mining techniques are used, in our case, as a basis for the system, since it
provides precise recommendations to the students in relation to their academic
performance. A similar idea is used in [6], in this case they will introduce OrieB, a CRS
working in the Academic Orientation domain, to support advisors helping students of
secondary school to make decisions about their academic future. OrieB utilizes the
students’ grades as input data in order to suggest their academic possibilities by providing
qualitative recommendations based on the fuzzy linguistic approach.
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3.-Recommendation using Data Mining

The objective of the system is to predict how convenient it is for a particular student to
take a specific course, using as basis results obtained by other students with similar
profile who had taken that course. To achieve this, data was organized in a table; each
row represents data from a student and a course. In this way, if a certain student had taken
C courses, in the table there will be C records with data about this student.

The result of the layout of the data is an m x n table (m records and n attributes) students-
attribute; the columns have data of when the student took the course: number of courses
taken simultaneously, name of course, grade obtained and accumulated grade point
average (GPA) of the student until the previous semester. The class to be considered in
the application of the supervised learning algorithm is the grade. This has been
discretized following current norms of the institution: failure (from 0 to 10.99) and
success (from 11.00 to 20).

Likewise, as the number of courses per curriculum is limited, there are not scalability and
dispersion problems inherent to this type of representation in traditional collaborative
filtering systems [4].

Figure 1 shows the architecture of the Recommendation System in the context of the
enrolment system. Firstly, the recommendation system uses the data of the historical
database of students and results obtained by them, with the goal of obtaining the rules.
These rules are generated by the Pattern Discovery module. In this module, the C4.5 sub-
module uses the training data (Pre-processing and Filtering prepares the training data) as
an input for generating the decision tree. This tree is used by the Production Rules to
generate the rules. Finally, the system provides recommendations based on these rules.
An example of a set of production rules is exhibited on the left side of figure 1.

4 _ D)
Enrolment 4 Production Rules;:
System
Rule 396
Courses = 5
i Courses <=6
. B n Course name =
Recommendations ||__ sl INGENIERIA DE CONTROL |

PPA at the beginning > 13.065
FPFPA at the beginning <= 13.437

Production >Class APROB [96.0%]

Rules
Rule 85:
+ Course name =
| INGENIERIA DE SOFTWARE |
c4.5 FPPA gl the beginning = 12 8527
PPA at the beginning <= 13
Pattern Discovery >Class APROB [94.4%]
Preprocessing Rule 70-
& ——
Filtering \\___,,/’____\\
\_ Recommendation System L _jj

Fig. 1 Recommendation system architecture
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4.- Data pre-processing

In the entire data mining process, it is of great relevance the data cleaning process in
order to eliminate irrelevant items. The discovery of patterns will be only useful if the
data represented in files offers a real representation of the academic performance and the
actions and/or decisions taken by the student in the past [8].

Initially, the University provided us a database of 100274 records corresponding to 3230
students. After filtering process of the data 58871 records were left. The data supplied is
only from students at the School of Systems Engineering, enrolled through the years 2002
to 2008.

The main objective of our research is to discover patterns that will be used to suggest
positive or negative recommendations to a student previously to his/her enrolment at
given course, taking as basis grades from other students with similar academic yields. In
this sense, knowing the role of each attribute and the implicit relations among them, we
have decided to consider that automatic learning will be performed with attributes
Courses enrolled in, Name of course, Accumulative GPA starting the term, Grade

5.- Pattern extraction and evaluation

The objective is to develop a system able to predict the failure or success of a student in a
course using a classifier obtained from the analysis of a set of historical data related to the
academic yield of other students, who took the same course in the past.

We tried out several techniques and configurations, seeking classifiers models to optimize
predictions about students’ outcomes. Of these tries, two distinctive factors of the work
were taken into consideration:

e The method used to learn the classifier should consider that on real situations,
conditions could change from year to year and the classifier could reflect “old” patterns.
For example, recommendations made on the first term of academic year 2009 will be
done using historical data until 2008.

e As with any learnt classifier, it is expected to have a percentage of error in the
predictions. It will be worst to recommend a student to enrol in a course that he/she will
not pass, than recommend not to enrol in a course that he/she would pass.

These criteria lead the configuration of trials performed to determine patterns for a correct
prediction of academic performance. Four assays were performed; following is a
description of them. As it was mentioned, these assays were performed in 58871 records
after filtering and cleaning the data, corresponding to 2867 students who carried out their
enrolment between the years 2002 and 2008.

The first trial was the application of the algorithm C4.5[13] with the training set. This set
corresponds to instances between 2002 and 2007, that is to say, 50488 instances were
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analyzed. It is worth to mentioning that instances representing enrolments during 2008
(8383 instances) were taken as unseen instances. For this reason, they are used to test the
accuracy of the model. The model obtained in this trial has the number of false positives
significantly greater than the number of false negatives. This fact is crucial for this
research since the knowledge of experts in this domain indicates that this recommender
system would be useful if the false positives are lower than false negatives. In other
words, the number of false positives is more important than the false negatives. Although
the accuracy of the resulting model was high (more than 80%), a second trial was needed.

The second assay consisted of using the same algorithm with the same previous
conditions, but using re-sampling on the training data set. On this way, the class
distribution of the instances was biased towards a uniform distribution. The goal was to
increases the chances of negative prediction, even if it would imply a worse performance
of the classifier. Luckily the result of this assay showed that false positives were
decremented and the accuracy was only 5% less than the accuracy of the previous trial.

The validation of the model was made in the third assay by executing C4.5 algorithm with
a supplied experiment set (unseen instances). It is worth to noting that using enrolment
data from year 2008 to test the classifier model learnt with data between 2002 and 2007
replicates how the model will be used in real situations: old data is used to predict
outcomes of new students. This trial demonstrated that the accuracy of the model is
enough to consider it adequate to predict the success or failure in a course by a student.

Finally, the algorithm C4.5 was applied to the entire set of data, from 2002 to 2008, using
re-sampling. As a result, patterns that will be effective for the recommendation system
were obtained.

6.- Analysis of Results

The analysis of the results of the assays, as well as the main statistics of the prediction
model, is explained in this section.

6.1. - First assay

Using the first classifier, 41086 instances were correctly classified (81.38%), and 9402
were incorrectly classified (18.62%). The confusion matrix showed that false positives
(students that failed but were classified as passing) were 7217, representing 76.76% of
wrongly classified and 14.29% of total of classified students. False negatives (students
that passed but were classified as failing) were 2185, representing 23.24% of wrongly
classified and 4.32% of the total of classified students.

As the most important in a recommendation system is the effectiveness it achieves with
users and giving the particular domain, the experts in the domain consider that in this first
assay the value of representing false positives is too high in relation with the false
negatives.
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6.2.- Second assay

The second model classified correctly 62470 instances (75.80%). This percentage means
that accuracy in this trial was lower than in the first one, but it was still adequate. The
instances incorrectly classified were 19944 representing 24.20%. The confusion matrix
displays that the false positives were 7262 representing 36.41% of incorrectly classified
and 8.81% of total classified students. False negatives were 12682, representing 63.59%
of incorrectly classified and 15.39% of total classified students.

6.3.- Third assay

The third model classified correctly 6193 instances, representing 73.9%. In this trial
accuracy of the model was lower than in the two previous ones. Instances correctly
classified were 2190 representing 26.1%; from the confusion matrix, it can be deduced
that false positives were 435 representing 19.8% of incorrectly classified and 5.2% of
total classified students. False negatives were 1755 representing 80.2% of wrongly
classified and 20.4% of total classified students.

6.4.- Fourth assay:

This last trial was performed with the minimum number of items for branches in the C4.5
method set to 20. Table 6 presents a set of interesting production rules.

Table 1. Rules fourth phase results

Rule 198: Name of course = INTEROPERABILIDAD Y ARQ. DEL SOFTWARE
Accumulative GPA starting the term > 10.0256
Accumulative GPA starting the term <= 10.7428

-> class APROB [96.2%]

Rule 396 Courses enrolled in > 5

Courses enrolled in <= 6

Name of course = INGENIERIA DE CONTROL I
Accumulative GPA starting the term > 13.0652
Accumulative GPA starting the term <= 13.4371

-> class APROB [96.0%]

Rule 221 Courses enrolled in > 5

Courses enrolled in <=7

Name of course = DINAMICA DE SISTEMAS
Accumulative GPA starting the term > 11.173
Accumulative GPA starting the term <= 11.7333

-> class APROB [95.3%]

Rule 95: Name of course = INGENIERIA DE SOFTWARE I
Accumulative GPA starting the term > 12.8521
Accumulative GPA starting the term <= 13

-> class APROB [94.4%]

7. - Conclusions and future work

In this section some of the main conclusions and contributions of the work are
summarized, and some possible future development lines are commented.

As it has been emphasized, the most important point of this research is the acquisition of
knowledge from students’ academic performance. The main purpose is to provide support
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for new students in order they can choose better academic itineraries. Recommendation
systems are familiar to this process; this is the technique used in the recommendation
engine that stresses accuracy and effectiveness. In this sense, the research has focused in
testing, using real data, the application of techniques and tools in data mining to support
students when enrolling on a new term. To achieve this goal, we had analyzed real data
from students that had taken the same courses in the past, using techniques such as
decision trees to discovery trends, patterns and rules that will be used as support for
decision taking in the itinerary of a certain university career.

It was found that using data mining, it is possible to develop a model representing the
behaviour of students in their way through different academic itineraries. This facilitates a
proper vision of the behaviour and performance of the group of students at certain
university career and, at the same time, allows feeding the system to offer
recommendations for students to increase their effectiveness and relevance at decision
taking in relation with the courses to be enrolling on.

We presented four assays by using the same technique with four different configurations,
in order to show the advantages and disadvantages of the technique used as well as to
detect classifiers that would perform better in real settings. The first trial was a classic 10
fold cross validation over 50488 instances corresponding to enrolments from 2002 to
2007.

However, the same technique was also applied with other setting, penalizing more the
error produced by false positives giving more weight to the data corresponding to
instances whose class was failure. Assay results show that global accuracy was 75.80%.
Although global accuracy is lower at this second trial than in the first one, the objective
was accomplished, as the number of false positives decreased in relation to false
negatives, assuring its effectiveness.

Due to the success of the second assay, a third essay was carried out. The main objective
was that the system learns with the record of enrolments made from 2002 to 2007
(training set), considering the set of records representing enrolment in 2008 as the
experiment set (unseen set). In this way, we simulated the fact of implementing and
testing the recommendation system for students enrolled in 2008.

Finally, a fourth assay was developed, by applying the learning algorithm to all the
instances, obtaining 77.3% of global accuracy. The global accuracy of this last trial was
greater than the second and the third ones.

It is meaningful to emphasise that assay presented in this work, besides using real data,
shows that used tools are very powerful techniques, but also they have weak points when
looking for patterns in a domain of knowledge with participation of human factor and has
direct relevant consequences in the data.

In addition, pattern detection offers two types of information. On one hand, the student
can infer that system’s recommendation is related with his/her global academic
performance or to certain courses. Therefore, the student could freely decide, taking into
consideration more subjective factors, to enrol or not. For the university the system has
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relevant information related to students’ academic results in one or several courses,
information that would not be available applying descriptive statistical techniques. It is
worth to mentioning that analyzed information could be used as input in an eventual
curriculum modification.

In this way, the main objective of this work is to support students through
recommendations, in the complex process of deciding how many and which courses enrol
on, taking into consideration academic performance and other similar characteristics. But
a second important benefit is that it can offer useful information to meaningfully improve
academic performance of students, using as basis a good study plan for the academic
period.

Even though the obtained results had been satisfactory, it is necessary to mention that for
future works it will be necessary to test the system with data from other faculties in order
to know consistency and convergence. We want to establish effectiveness thresholds in
the use of these techniques to obtain more and better outcomes in the application of data
mining techniques for recommendation systems in this domain of application.

Other important aspect is to obtain the relation between the different courses. Currently,
we are working to obtain (from data used in this research) patterns that relate courses with
students’ academic performance. This type of information will eventually represent an
additional element to improve the recommendations offered by the system.
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