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Preface

The Second International Conference on Educational Data Mining
(EDM2009) was held at the University of Cordóba, Spain, on July 1–3,
2009. It follows the first edition of the conference held in Montreal in 2008,
and a series of workshops within the AAAI, AIED, EC-TEL, ICALT, ITS,
and UM conferences. EDM2010 will be held in Pittsburg, US.

EDM brings together researchers from computer science, education,
psychology, psychometrics, and statistics to analyze large data sets to
answer educational research questions. The increase in instrumented ed-
ucational software and databases of student test scores, has created large
repositories of data reflecting how students learn. The EDM conference
focuses on computational approaches for using those data to address im-
portant educational questions. The broad collection of research disciplines
ensures cross fertilization of ideas, with the central questions of educa-
tional research serving as a unifying focus.

We received a total of 54 submissions from 24 countries. Submissions
were reviewed by three reviewers and 20 of them were accepted as full
papers (37.03% acceptance rate). 13 other submissions were accepted as
poster or as student papers. All papers will appear both on the web,
at www.educationaldatamining.org, as well as in the printed proceed-
ings. The conference also included invited talks by Professor Arthur C.
Graesser from University of Memphis and by Professor Bamshad Mobasher
from DePaul University.

We would like to thank the Universidad de Córdoba, Escuela Uni-
versitaria Politécnica, Junta de Andalućıa y Ministerio de Ciencia e In-
novación for their generous sponsorship of EDM2009. We would like to
thank the program committee members, local committee, web chair, the
reviewers and the invited speakers for their enthusiastic help in putting
this conference together.

Tiffany Barnes
Michel C. Desmarais
Cristóbal Romero
Sebastián Ventura

Educational Data Mining 2009

3



Educational Data Mining 2009

4



Conference Organization

Conference Organisation
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A Comparison of Student Skill Knowledge Estimates

Elizabeth Ayers1, Rebecca Nugent1, and Nema Dean2

{eayers, rnugent}@stat.cmu.edu, {nema}@stats.gla.ac.uk
1Department of Statistics, Carnegie Mellon University

2Department of Statistics, University of Glasgow

A fundamental goal of educational research is identifying students’ current stage of
skill mastery (complete/partial/none). In recent years a number of cognitive diagnosis
models have become a popular means of estimating student skill knowledge. However,
these models become difficult to estimate as the number of students, items, and skills
grows. There exist alternatives such as sum-scores and the capability matrix. While
initial theoretical work on sum-scores has been done, the behavior of sum-scores and
the capability matrix is not well understood with respect to each other or to estimates
from cognitive diagnosis models. In this paper we compare the performance of the
three estimates of student skill knowledge under a variety of clustering methods using
simulated data with varying levels of missing values.

1 Introduction
A fundamental goal of educational research is identifying students’ current stage of

skill mastery (complete/partial/none). In addition, finding groups of students with similar
skill set profiles is important to provide feedback for classroom instruction. In recent years
a number of cognitive diagnosis models [3,8] have become a popular means of estimating
student skill knowledge. However, these models become difficult and time-consuming
to estimate as the number of students, items, and skills increases [8]. Two alternative
estimates, sum-scores [3,6] and the capability matrix [1], can be used to estimate student
skill knowledge in (near to) real time. Estimates are subsequently clustered to identify
similar skill set profiles.

While initial theoretical work on sum-scores has been done [3], the behavior and per-
formance of sum-scores and the capability matrix is not well understood in comparison
with each other or with estimates from cognitive diagnosis models. The performance of
the methods when missing values occur is also of interest. Moreover, which clustering
method to employ is an open question. In this work we take a step back and compare
the performance of three estimates of student skill knowledge under a variety of clustering
methods. In Section 2, we describe the three different estimates of student skill knowledge.
In Section 3, we give a brief introduction to the clustering methods used. In Section 4,
we show results from a simulation study incorporating varying amounts of missing data.
Finally, in Section 5, we offer conclusions and thoughts on future work.

2 Estimates of Student Skill Knowledge
While there may be several possible methods to estimate student skill knowledge, this

paper will consider one traditional Bayesian estimation procedure and two simpler statis-
tics. First, we introduce notation that will be common among the methods. We begin by

1

Educational Data Mining 2009



assembling the skill dependencies of each item into a Q-matrix [2,12]. The Q-matrix, also
referred to as a transfer model or skill coding, is a J × K matrix where q jk = 1 if item j
requires skill k and 0 if it does not, J is the total number of items, and K is the total number
of skills. The Q-matrix is usually an expert-elicited assignment matrix. This paper assumes
the Q-matrix is known and correct.

There are (at least) two ways in which Q-matrices can differ. First, each item could
require only a single skill or multiple skills. A Q-matrix can then be comprised of all
single skill items, single and multiple skill items, or all multiple skill items. Second, the
Q-matrix may have a balanced or unbalanced design. In a balanced design, all single skill
items occur the same number of times, and each combination of skills occurs the same
number of times. For example, if K = 3 and J = 30 one possible balanced design would
be: five single skill items for each skill, four double skill items for each pair of skills, and
three triple skill items. A design could be unbalanced in two ways. Either all skills or
combinations of skills are present but do not occur the same number of times or there are
missing skills or combinations of skills.
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
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We then assemble student responses in a N × J response matrix Y where yi j indicates
both if student i attempted item j and whether or not they answered item j correctly and
N is the total number of students. If student i did not answer item j then yi j = NA. The
indicator Iyi j,NA = 0 expresses this missing value. If student i attempted item j ( Iyi j,NA = 1),
then yi j = 1 if they answered correctly, or 0 if they answered incorrectly.

2.1 DINA Model Estimates

The first method of estimating student skill knowledge uses a common conjunctive
cognitive diagnosis model. The deterministic inputs, noisy “and” gate model (DINA; [8])
models student responses as

P(Yi j = 1 | ηi j, s j, g j) = (1 − s j)ηi jg1−ηi j
j (1)

where αik = I{Student i has skill k} indicates if student i possesses skill k, ηi j =
∏K

k=1 α
q jk
ik

indicates if student i has all skills needed for item j, s j = P(Yi j = 0 | ηi j = 1) is the slip
parameter, and g j = P(Yi j = 1 | ηi j = 0) is the guess parameter. If a student is missing any
of the required skills, the probability that they will answer an item correctly drops due to
the conjunctive assumption.

We estimate the student skill knowledge parameters of the DINA model, the αik, using
Markov Chain Monte Carlo methods with the program WinBUGS (Bayesian Inference
Using Gibbs Sampling, [9]). In the model, the αik are 0/1 indicating whether or not student
i has mastered skill k. Our estimates will be α̂ik ∈ [0, 1]. We can think of the α̂ik as the
probability that student i has mastered skill k.

2
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2.2 Sum-scores

The second estimate we consider is the sum-score method of [3,6]. Here Wi = (Wi1,

Wi2, ...,WiK) is a vector of sum-scores where the kth component is defined as

Wik =

J
∑

j=1
yi jq jk, (2)

where yi j and q jk are the corresponding entries from the response matrix Y and Q-matrix.
Thus, the components of Wi are simply the number of items student i answered correctly
for each skill k. When an item requires more than one skill it will contribute to more than
one component of Wi. The range of Wik may be different for each k if the skills are required
by a different number of problems.

2.3 Capability Matrix

Finally, we consider the capability matrix defined in [1]. The capability matrix B is an
N × K matrix where Bik is the proportion of correctly answered items involving skill k that
student i attempted. Thus,

Bik =

∑J
j=1 Iyi j,NA · yi j · q jk
∑J

j=1 Iyi j,NA · q jk
, (3)

where yi j and q jk are the corresponding entries from the response matrix Y and Q-matrix.
The capability matrix expands on sum-scores by accounting for the number of items re-
quiring skill k that student i answered. In this manner the statistic scales for the number of
items in which the skill appears as well as for missing data. If a student has not seen all
of the items requiring a particular skill, we still derive an estimate based on the available
information. If student i completes no items involving skill k, then Bik = NA. In this case,
we impute an uninformative value (e.g., 0.5, mean, median) to map students to the hyper-
cube. Exploring the performance of these imputation choices is ongoing. For this paper we
assume that the data are complete or that missing B-values are appropriately imputed.

We can note that both the DINA model estimates and the B-matrix values map students
into a K-dimensional hypercube (for each dimension, zero indicates total lack of skill mas-
tery, one is complete skill mastery, and values in between are less certain). The 2K corners
of the hypercube correspond to natural skill set profiles Ci = {Ci1,Ci2, ...,CiK},Cik ∈ {0, 1}.

Additionally, we can note theoretical connections between the sum-scores and B-matrix
values. If there are no missing response values yi j, then

Wik = JkBik, (4)

where Jk is the number of items that require skill k. When all students have answered
all questions and there is a balanced Q-matrix design (i.e., J1 = J2 = ... = JK), the two
estimates will mapto the same (scaled) feature space. In this case, we expect the two
estimates to perform similarly. However, when there is either missing data or an unbalanced

3
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Q-matrix design, the space to which the estimates map will be different. In this case, we
cannot guarantee that performance will be similar.

3 Clustering Methods
To identify groups of students with similar skill set profiles, we cluster the student

skill knowledge estimates. In this paper we will compare the performance of three com-
mon clustering methods: hierarchical agglomerative clustering, K-means, and model-based
clustering. In the sections below we briefly introduce each of these methods.

3.1 Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering (HAC; [10]) links groups in order of closeness to
form a tree structure from which a clustering solution can be extracted. Euclidean distance
is most commonly used to measure the distance between groups. The method also requires
the user to specify how to measure the distance between groups. We will use “complete”
linkage where the distance between any two groups is defined as the largest distance be-
tween two observations, one from each group. In HAC, all observations begin as their own
group. The two closest groups are merged and all inter-group distances are recalculated.
We continue merging groups and recalculating distances until a single group with all ob-
servations is formed. Once the tree structure is formed, we can extract the desired number
of clusters G by cutting the tree at a height corresponding to G branches.

3.2 K-means

K-Means [5] is a popular iterative descent algorithm for data X = {x1, x2..., xn}, xi ∈ <
K .

It uses squared Euclidean distance as a dissimilarity measure and tries to minimize within-
cluster distance and maximize between-cluster distance. For a given number of clusters G,
K-Means searches for cluster centers mg and assignments A that minimize the criterion

min
A

G
∑

g=1

∑

A(i)=g
‖xi − mg‖

2.

The algorithm alternates between optimizing the cluster centers for the current assign-
ment (by the current cluster means) and optimizing the cluster assignment for a given set
of cluster centers (by assigning to the closest current center) until convergence (i.e. clus-
ter assignments do not change). It tends to find compact, spherical clusters and requires a
priori both the number of clusters G and a starting set of cluster centers. The final clus-
ter assignment can be sensitive to the choice of centers; a common method for initializing
K-Means is to randomly choose G observations.

3.3 Model-based Clustering

Model-based clustering [4, 11] is a parametric statistical approach that assumes: the
data X = {x1, x2, ..., xn}, xi ∈ <

K are an independently and identically distributed sample
from an unknown population density p(x); each population group g is represented by a

4
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Table 1: Clustering the DINA Model Estimates of Student Skill Knowledge
N J K Q-matrix design DINA HAC K-means MBC MBC 2K

250 30 3 Single, bal 1.000 1.000 0.8739 0.9966 1.000
(0.0054) (0.0054) (0.0736) (0.0895) (0.0349)

250 30 3 Both, bal 0.9793 0.9781 0.8367 0.8915 0.9632
(0.0179) (0.0200) (0.1192) (0.0882) (0.1087)

250 30 3 Both,unbal, all 0.9657 0.9657 0.7789 0.9129 0.9350
(0.0285) (0.2920) (0.0941) (0.0505) (0.0758)

250 30 3 Both,unbal,miss 0.9240 0.9131 0.7696 0.8811 0.9132
(0.0395) (0.0427) (0.0858) (0.0696) (0.0428)

250 30 3 Mult, bal 0.4677 0.5127 0.5012 0.5282 0.4979
(0.0292) (0.0443) (0.0578) (0.0690) (0.0411)

250 30 3 Mult, unbal, all 0.4629 0.4874 0.4948 0.5130 0.4790
(0.0430) (0.0536) (0.0816) (0.0736) (0.0495)

250 30 3 Mult, unbal, miss 0.3239 0.4070 0.3835 0.4266 0.4090
(0.0380) (0.0596) (0.0521) (0.0837) (0.0630)

500 68 5 Both, bal 0.9463 0.9428 0.7132 0.8348 0.9243
(0.0184) (0.0188) (0.0428) (0.1123) (0.0488)

500 68 5 Both, unbal, miss 0.8724 0.8729 0.6665 0.8213 0.8624
(0.0247) (0.0219) (0.0466) (0.0960) (0.0226)

300 40 7 Single 0.9041 0.8891 0.7674 0.3050 0.8881
(0.0262) (0.0286) (0.0409) (0.1203) (0.0282)

(often Gaussian) density pg(x); and p(x) is a weighted mixture of these density components,
i.e. p(x) = ∑G

g=1 πg · pg(x; θg) where ∑ πg = 1, 0 < πg ≤ 1 for g = 1, 2, ...,G, and
θg = (µg,Σg) for Gaussian components. The method chooses the number of components
G by maximizing the Bayesian Information Criterion (BIC) and estimates the means and
variances (µg,Σg) via maximum likelihood. While it may assume Gaussian components, its
flexibility on their shape, volume, and orientation allows student groups of varying shapes
and sizes. When multiple students map to the same location, model-based clustering is
known to overfit the data by using spikes with near singular covariance in these locations
[4]. To alleviate this concern, we jitter the student skill estimates by a small amount (0.01).
The effect on our results is minimal.

4 Simulation Study
To compare the skill knowledge estimates and clustering methods described above we

did a simulation study using generated data from the DINA model (Equation 1). The Q-
matrix design is varied to include balanced and unbalanced combinations of single and
multiple skill items. Then, for a fixed Q-matrix design, we simulate 20 different student
populations. Skill difficulties are always set to equal medium difficulty; inter-skill correla-
tions are set to zero. These choices evenly spread students among the 2K natural skill set
profiles [0, 1]K. For each student population, we generate true skill set profiles Ci. We then
draw slip and guess parameters from a random uniform distribution (s j ∼Unif(0,0.30); g j ∼

5
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Table 2: Clustering the Sum-scores Estimates of Student Skill Knowledge
N J K Q-matrix design HAC K-means MBC MBC 2K

250 30 3 Single, bal 0.9910 0.8549 0.9191 0.9957
(0.0110) (0.0960) (0.2899) (0.0071)

250 30 3 Both, bal 0.7644 0.8156 0.9321 0.9442
(0.1095) (0.1110) (0.1181) (0.0515)

250 30 3 Both,unbal, all 0.6398 0.7707 0.6970 0.8494
(0.0889) (0.0951) (0.2138) (0.0713)

250 30 3 Both,unbal,miss 0.6482 0.6728 0.7066 0.7661
(0.0511) (0.0650) (0.2064) (0.1095)

250 30 3 Mult, bal 0.3950 0.4720 0.4383 0.4375
(0.0339) (0.0648) (0.0675) (0.0517)

250 30 3 Mult, unbal, all 0.3862 0.4606 0.4380 0.4481
(0.0533) (0.0670) (0.0696) (0.0428)

250 30 3 Mult, unbal, miss 0.2689 0.2827 0.3314 0.3099
(0.0273) (0.0848) (0.0352) (0.0347)

500 68 5 Both, bal 0.4006 0.5859 0.5893 0.6523
(0.0560) (0.0442) (0.1223) (0.0432)

500 68 5 Both, unbal, miss 0.4104 0.54412 0.6010 0.6265
(0.0373) (0.0366) (0.0537) (0.0397)

300 40 7 Single 0.7348 0.6474 0.0973 0.7080
(0.0526) (0.0456) (0.0362) (0.0453)

Unif(0,0.15)). Given profiles and slip/guess parameters, we generate the student response
matrix Y .

As we know the true underlying skill set profiles Ci, we can calculate their agreement
with the clustering partitions using the Adjusted Rand Index (ARI; [7]), a common mea-
sure of agreement between two partitions. The expected value of the ARI is zero and the
maximum value is one, with larger values indicating better agreement.

Tables 1, 2, and 3 show the clustering results for the DINA model estimates, sum-
scores, and the capability matrix, respectively. In each table, N is the number of students,
J is the number of items, and K is the number of skills. The Q-matrix design describes
the Q-matrix used when generating the student responses (see Section 2 for more details).
Here single indicates that there were only single skill items, both indicates that there were
both single and multiple skill items, and mult indicates that there were only multiple skill
items. Also, bal indicates that the Q-matrix had a balanced design. An unbalanced design
is denoted by unbal and all or miss shows whether all combinations were present or if some
were missing. For the DINA model estimates (Table 1), we rounded the α̂ik to 0/1 to find the
closest skill set profile. For the remaining methods in Table 1 and for all methods in Tables 2
and 3 we cluster the unrounded α̂ik. When using HAC and K-means, we set the number of
clusters equal to 2K as suggested by [3]. For MBC we search over an appropriate range;
MBC 2K indicates that we set the number of clusters to 2K . For each set of 20 simulations,
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Table 3: Clustering the Capability Matrix Estimates of Student Skill Knowledge
N J K Q-matrix design HAC K-means MBC MBC 2K

250 30 3 Single, bal 0.9910 0.8190 0.9957 0.9957
(0.0104) (0.0835) (0.0071) (0.0071)

250 30 3 Both, bal 0.7644 0.7947 0.9353 0.9411
(0.1095) (0.1056) (0.1583) (0.0300)

250 30 3 Both,unbal, all 0.7273 0.8082 0.6252 0.8281
(0.0867) (0.1227) (0.1719) (0.1543)

250 30 3 Both,unbal,miss 0.6698 0.7390 0.4563 0.6693
(0.0813) (0.0778) (0.1267) (0.1628)

250 30 3 Mult, bal 0.4045 0.4530 0.4586 0.4499
(0.0347) (0.0508) (0.0624) (0.0382)

250 30 3 Mult, unbal, all 0.3899 0.4585 0.4518 0.4580
(0.0509) (0.0550) (0.0822) (0.0589)

250 30 3 Mult, unbal, miss 0.2700 0.3638 0.2803 0.2840
(0.0291) (0.0737) (0.0620) (0.0457)

500 68 5 Both, bal 0.4096 0.5711 0.5951 0.6647
(0.0504) (0.0543) (0.1284) (0.0928)

500 68 5 Both, unbal, miss 0.4327 0.5435 0.5560 0.6291
(0.0405) (0.0350) (0.2027) (0.1050)

300 40 7 Single 0.7399 0.6437 0.0906 0.7109
(0.0545) (0.0402) (0.0168) (0.0409)

we report the median ARI and the standard deviation.

First, we examine performance differences across Q-matrix designs. The first Q-matrix
has only three skills; each skill occurs in 10 single skill items. The ARI for all three meth-
ods of estimation and all clustering methods is 1 in nearly all cases. Across the methods,
K-means has the lowest ARI. This is not surprising as we randomly select 2K = 8 observa-
tions as the starting centers. A more informed set of starting centers (i.e., the natural skill
set profiles) may lead to better performance. For the K = 3 examples, the ARI is higher
when there are only single skill items compared to when there are both single and multi-
ple skill items and only multiple skill items. The lone exception is MBC with sum-scores
(Single, bal = 0.9191, Both, bal = 0.9321). The standard deviation in this case (0.2899) is
rather large and indicates a wide range of ARI values for these 20 simulated datasets.

We now take a closer look at Q-matrices with at least some multiple skill items. We can
note that the performance of all three clustering methods is better (as indicated by a higher
ARI) when there are both single and multiple skill items in the Q-matrix, compared to only
multiple skill items (also true across all three methods of estimation). In addition, when
the Q-matrix has a balanced design, as opposed to an unbalanced design, the recovery of
the true skill set profiles is better. In general, the performance of the three estimates of the
student skill knowledge is similar across the clustering methods. This similar performance
is particularly interesting since using sum-scores and the capability matrix yield large com-
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Table 4: Clustering the DINA Model Estimates of Student Skill Knowledge for N =

250, J = 30,K = 3 with Missing Response Data
Q-matrix design % missing DINA HAC K-means MBC MBC 2K

Both, bal 0 0.9793 0.9781 0.8367 0.8915 0.9632
Both, bal 10 0.4584 0.4690 0.4750 0.4725 0.4754
Both, bal 20 0.4326 0.4550 0.4581 0.4544 0.4567
Both, bal 30 0.4006 0.4340 0.4276 0.4267 0.4306
Both, bal 40 0.3513 0.3825 0.3850 0.3655 0.3681

Both, unbal, miss 0 0.9240 0.9131 0.7696 0.8811 0.9132
Both, unbal, miss 10 0.9084 0.9057 0.7516 0.8274 0.8009
Both, unbal, miss 20 0.8775 0.8651 0.7294 0.7560 0.7578
Both, unbal, miss 30 0.8193 0.8160 0.7256 0.7052 0.6948
Both, unbal, miss 40 0.7694 0.7746 0.7181 0.6515 0.6114

Table 5: Clustering the Sum-Score Estimates of Student Skill Knowledge for N = 250, J =
30,K = 3 with Missing Response Data

Q-matrix design % missing HAC K-means MBC MBC 2K

Both, bal 0 0.7644 0.8156 0.9321 0.9442
Both, bal 10 0.6255 0.7671 0.8280 0.8489
Both, bal 20 0.5000 0.6717 0.4854 0.7526
Both, bal 30 0.4191 0.5855 0.4131 0.5309
Both, bal 40 0.3168 0.5072 0.2951 0.3867

Both, unbal, miss 0 0.6482 0.6728 0.7066 0.7661
Both, unbal, miss 10 0.5744 0.6091 0.3608 0.6563
Both, unbal, miss 20 0.4834 0.5556 0.3264 0.5414
Both, unbal, miss 30 0.3686 0.4876 0.2725 0.3961
Both, unbal, miss 40 0.3266 0.4203 0.2514 0.2624

putational savings when compared to estimating the DINA model using WinBUGS (up to
700 times faster; [1]). Moreover, in this simulation study the data are generated from the
DINA model; we would expect the Bayesian estimation to perform well in this best-case
scenario. For sum-scores and the capability matrix to perform as well as, and better than in
some cases, the DINA model is noteworthy.

The above results are for student populations with complete response data. In practice,
missing responses (unanswered questions) will be ubiquitous. We chose two Q-matrix
designs with N = 250, J = 30, and K = 3 (Both, bal and Both, unbal, miss) and removed
0, 10, 20, 30, and 40% of the student responses completely at random for each of the
20 student populations. Results can be seen in Tables 4, 5, and 6. Note that the 0%
missing corresponds to the previously shown results. Again, we report the median ARI.
The standard deviations are not shown due to space limitations. They ranged from 0.03 to
0.16 and were generally ordered as DINA model (lowest), capability matrix, and sum-score
(highest).
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Table 6: Clustering the Capability Matrix Estimates of Student Skill Knowledge for N =
250, J = 30,K = 3 with Missing Response Data

Q-matrix design % missing HAC K-means MBC MBC 2K

Both, bal 0 0.7644 0.7947 0.9353 0.9411
Both, bal 10 0.6682 0.7894 0.6633 0.8786
Both, bal 20 0.6028 0.7491 0.5350 0.7655
Both, bal 30 0.6022 0.7141 0.5021 0.5505
Both, bal 40 0.4842 0.6103 0.3948 0.4086

Both, unbal, miss 0 0.6698 0.7390 0.4563 0.6693
Both, unbal, miss 10 0.6032 0.6980 0.4766 0.5473
Both, unbal, miss 20 0.5761 0.6629 0.4687 0.4654
Both, unbal, miss 30 0.5351 0.6251 0.4764 0.4775
Both, unbal, miss 40 0.5108 0.5658 0.4144 0.4335

In general, as the amount of missing data increases, the ARI decreases across all three
estimation methods and all methods of clustering. However, some methods show more
substantial decreases than others. When using the capability matrix, K-means shows rel-
atively stable performance for both Q-matrix designs. For the Both, unbal, miss design,
HAC and MBC also show stable performances. When using sum-scores, the performance
drops more noticeably across all clustering methods which may reflect that the capability
matrix scales for the number of questions answered while sum-scores do not. In the Both,
bal case, the performance of the capability matrix estimates is generally better than both
the DINA model estimates and the sum-scores (particularly true for K-means). For HAC,
sum-scores and the capability matrix perform similarly (both better than the DINA model
estimates). For the Both, unbal, miss case, the performance of the DINA model estimates is
better than both sum-scores and the capability matrix estimates. When using the capability
matrix estimates, K-means clustering performs best; its ARI values are only slightly lower
than those of the DINA model.

5 Conclusions
Simulated examples show that recovery of the true skill set profiles is best when only

single skill items occur. For Q-matrices with multiple skill items, recovery is improved if
there are also single skill items present. These results hold across all three clustering meth-
ods and all three estimates of student skill knowledge. In addition, we note that the more
computationally attractive capability matrix and the sum-score estimates perform similarly
to the Bayesian estimation of the DINA model.

However, when there are missing responses, the performance of the estimation proce-
dures changes. In general, the ARI values decrease as the percent of missingness increases
(across all estimation and clustering methods). When the Q-matrix has a Both, bal design,
the capability matrix estimates perform better than both the DINA model and sum-score
estimates. In the Both, unbal, miss design, the DINA model estimates perform better than
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sum-scores and the capability matrix estimates.

These results can be used to guide the design of exams and tutor problems. For better
estimation of student skill knowledge, single skill items should be included for each skill.
In addition, students should be encouraged to finish all items. Whether or not it is by
design, when students use online tutors, for example, they often do not complete all the
items. In this case, it is particularly important for single skill items to be included. In the
presence of missing responses, however, care should be taken when choosing an estimation
method and a clustering method. The best choice is not obvious.

While there are benefits of using the capability matrix and/or sum-scores, we note that
if an item requires multiple skills and a student answers incorrectly, all skills required by
the item will receive a penalty, even if the student has mastered one (or more) of the skills.
In future work, we will explore the behavior of alternative estimates that better account
for multiple skill items. Possible methods could use empirical performance on single skill
items or weight by the number of skills required by the incorrectly answered item.
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Abstract. Recent research has suggested that differences between intelligent 

tutor lessons predict a large amount of the variance in the prevalence of gaming 

the system [4]. Within this paper, we investigate whether such differences also 

predict how much students choose to go off-task, and if so, which differences 

predict how much off-task behavior will occur. We utilize an enumeration of the 

differences between intelligent tutor lessons, the Cognitive Tutor Lesson 

Variation Space 1.1 (CTLVS1.1), to identify 79 differences between tutor 

lessons, within 20 lessons from an intelligent tutoring system for Algebra. We 

utilize a machine-learned detector of off-task behavior to predict 58 students’ 

off-task behavior within that tutor, in each lesson. Surprisingly, the best model 

predicting off-task behavior from lesson features contains only one feature: 

lessons that involve equation-solving. We discuss possible explanations for this 

finding, and further studies that could shed light on this relationship.  

1 Introduction 

What underlies students’ choices, while they use educational software? In particular, why 

do students choose to game the system or go off-task, while using educational software? 

Much of the research on these questions has focused on the role that stable or semi-stable 

student individual differences play in driving these types of behaviors [2, 3, 8, 9]. Take, 

for example, the case of gaming the system (“attempting to succeed in an interactive 

learning environment by exploiting properties of the system rather than by learning the 

material” [cf. 5]). Several studies have been published that attempt to explain gaming 

behavior in terms of stable or semi-stable individual differences between students, such 

as a student’s attitude towards mathematics or goal orientation [2, 8, 9]. These studies 

have generally found statistically significant relationships. However, the relationships 

found in these studies only explain 5-9% of the variance in gaming behavior (r
2
 = 0.05 to 

0.09) [2,8], a relatively low degree of explanatory power.  

By contrast, [7] found that the differences between intelligent tutor lessons predict a large 

proportion of the variance in gaming behavior. In an analysis of 58 students’ behavior 

within 20 lessons in an intelligent tutor for algebra (corresponding to the majority of a 

year’s curriculum), a combination of features of tutor lessons was found to predict 56% 

of the variance in gaming behavior (r
2
 = 0.56). In particular, lessons that incorporated 

interest-increasing text into problem scenarios had significantly less gaming; lessons with 

various types of ambiguity had more gaming; lessons with ineffective hints had more 

gaming; and lessons based on equation-solving had less gaming. These results suggest 

that it may be possible to bypass the intrusiveness and high development costs of 

interactive responses to gaming [cf. 1, 4, 22] simply by altering these features of lessons, 
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designing lessons with less extraneous ambiguity and more attempts to increase student 

interest.  

The discovery that gaming the system can be well predicted by small-scale differences in 

educational software design raises the question of whether other prominent learner 

behaviors are similarly associated with small-scale features of software design.  In this 

paper, we investigate whether small-scale differences in software design can predict 

variance in off-task behavior. Off-task behavior shares many characteristics with gaming 

behavior. Both behaviors have been found to be associated with poorer learning in 

intelligent tutoring systems, although gaming the system’s impact on learning is both 

larger and more immediate [6, 11]. Additionally, the two behaviors have each been found 

to be weakly associated with some of the same student individual differences [3], in 

particular negative attitudes towards computers and mathematics.  

In this study, we apply a previously validated detector of off-task behavior [3] to data 

obtained from the PSLC DataShop [15], representing an entire school year of use of 

Cognitive Tutor Algebra, a widely used intelligent tutoring system. During the school 

year, students worked through a variety of lessons on different topics. These lessons had 

moderate variation in subject matter and considerable variation in design, making it 

possible to observe which differences in subject matter and/or design are associated with 

differences in how much off-task behavior occurs. We apply an existing taxonomy of the 

differences between tutor lessons [7] to these lessons, and investigate which lesson 

features are most strongly associated with off-task behavior. 

2 Data and Models Applied 

Data was obtained from the PSLC DataShop [15] (dataset: Algebra I 2005-2006 

Hampton Only), for 58 students’ use of Cognitive Tutor Algebra during an entire school 

year. The data set was composed of approximately 437,000 student transactions (entering 

an answer or requesting help) in the tutor software. All of the students were enrolled in 

algebra classes in one high school in the Pittsburgh suburbs. The school used Cognitive 

Tutors two days a week, as part of its regular mathematics curriculum. None of the 

classes were composed predominantly of gifted or special needs students. The students 

were in the 9
th

 and 10
th

 grades (approximately 14-16 years old).  

The Cognitive Tutor Algebra curriculum involves 32 lessons, covering a complete 

selection of topics in algebra, including formulating expressions for word problems, 

equation solving, and algebraic function graphing. Three lessons from Cognitive Tutor 

Algebra are shown in Figure 1. Data from 8 lessons was eliminated from consideration, 

as taxonomy codings were not available for those lessons (these lessons were not coded 

in [7], due to having limited data from those lessons available for that paper’s analyses of 

interest). On average, each student completed 10.7 tutor lessons (among the set of 24 

lessons considered), for a total of 619 student/lesson pairs.  

Educational Data Mining 2009

12



 

 

------------------------------------------------------------------

----------------------------------------------------------------------------

Figure 1.  Three lessons from Cogniti

Problem with 

 
------------------------------------------------------------------ 

 

------------------------------------------------------------------------------------------------------------

s from Cognitive Tutor Algebra. Top: The Equation-Solver. Middle: 

Problem with Worksheet. Bottom: Function Graphing.  

-------------------------------- 

 

. Middle: Story 

Educational Data Mining 2009

13



 

 

 

To determine how often each student was off-task, in each lesson, each student’s actions 

were labeled using Baker’s [3] detector of off-task behavior. The detector was developed 

using data from 429 students’ classroom use of three lessons from an intelligent tutor on 

middle school mathematics. Applying this detector makes it tractable to study off-task 

behavior across a wide variety of tutor lessons. By contrast, other well-known methods 

are intractable – for instance, conducting quantitative field observations on a similar 

number of tutor lesssons and students would involve sending out two or more research 

assistants to classrooms for an entire year.   

The detector, under cross-validation, achieved a correlation of 0.55 to field observations 

of off-task behavior – hence, it can be considered reasonably reliable for these purposes. 

The detector is also able to distinguish off-task behavior from on-task conversation, by 

looking at the student actions that occur immediately before and after a seemingly idle 

pause. We show the model that predicts off-task behavior within the detector in Table 1. 

The detector makes a prediction as to whether each action is off-task, and then aggregates 

across actions to indicate what proportion of student actions was off-task (or, 

alternatively, what proportion of student time was off-task). Full details on this detector 

are available in [3]. Two features (F3 and F6) involved features that were not available 

for this data set (string and generally-known). However, F3 and F6 together accounted 

for only 4.4% of the cross-validated correlation accounted for by this model [3] – hence, 

this model can still be expected to be accurate even in the absence of these features.  

Table 1.  The model of off-task behavior (OT) used in this paper, from [3]. In all cases, param1 is 

multiplied by param2, and then multiplied by value. Then the six features are added together. If the 

sum is greater than 0.5, the action is considered to be off-task. Features that were not applicable to 

the current data set are indicated in gray. “Pknowretro”, a feature found in many behavior 

detectors, refers to the probability the student knew the skill if the action was the first opportunity to 

practice the current skill on the current problem step, and is -1 otherwise.  

 param 1 param 2 value Interpretation 

F1 timelast3SD timelast5SD -0.08 

OT: Very fast actions immediately 

before or after very slow actions 

F2 timeSD timeSD 0.013 

OT: Extremely fast actions or 

extremely slow actions 

F3 string pknowretro -0.36 

OT: Less likely on well-known string-

input steps  

OT: More likely when inputting a 

string after error  

F4 notfirstattempt recent8help -0.38 Not OT: Asking for a lot of help 

F5 notright pknowretro -0.16 

OT: Two errors or help-requests in a 

row 

Not OT: Errors or help requests on 

skills the student has already mastered 

F6 pctwrong 

generally-

known 0.04 

OT: Indicated by many errors on skills 

students generally know prior to 

starting this lesson 
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Table 2. The 79 features of the Cognitive Tutor Lesson Variation Space (CTLVS1.1) used in study. 

Features captured using data mining methods (as opposed to hand-coding) marked with *. 

Difficulty, Complexity of Material, and Time-Consumingness 

1*. Avg. % error 2. Lesson consists solely of review of material encountered in 

previous lessons 

3*. Avg. probability that student will learn a skill at each 

opportunity to practice skill [cf. 12] 

4*. Avg. initial probability that student will know a skill when 

starting tutor [cf. 12] 

5. Avg. # of “distractor” values per problem 6. % of problems where “distractor” values given 

7. Max number of mathematical operators needed to give correct 

answer on any step in lesson 

8. Maximum number of mathematical operators mentioned in 

hint on any step in lesson 

9. Intermediate calculations must be done outside of software 

(mentally or on paper) for some problem steps (ever occurs) 

10. % of hints that discuss intermediate calculations that must 

be done outside of software 

11*. Total number of skills in lesson 12*. Avg. time per problem step 

13. % of problem statements that incorporate multiple 

representations (ex: diagram and text) 

14. % of problem statements that use same numeric value for 

two constructs 

15. Avg. number of distinct/separable questions or problem-

solving tasks per problem 

16. Maximum number of distinct/separable questions or 

problem-solving tasks in any problem 

17. Avg. # of numbers manipulated per step 18*. Avg. # of times each skill repeated per problem 

19*. Number of problems in lesson 20*. Avg. time spent in lesson 

21. Avg. number of problem steps per problem 22. Minimum number of answers or interface actions required 

to complete problem 

Quality of Help Features 

23*. Avg. amount that reading on-demand hints improves 

performance on future opportunities to use skill [cf. 10] 

24*. Avg. Flesch-Kincaid Grade Reading Level [16] of hints 

25. % of hints using inductive support, going from example to 

abstract concept/principle 

26. % of hints that explicitly explain concepts or principles 

underlying current problem-solving step 

27. % of hints that explicitly refer to abstract principles 28.  On average, # of hints must student request before concrete 

features of problems are discussed 

29. Avg. number of hint messages per hint sequence that orient 

student to math sub-goal 

30. % of hints that explicitly refer to scenario content (instead 

of solely math constructs) 

31. % of hint sequences that use terminology specific to this 

software 

32. % of hint messages which refer solely to interface features 

33. % hint messages that teacher can’t understand 34. % of hint messages with complex noun phrases 

35. % of skills where the only hint message explicitly tells 

student what to do 

 

Usability 

36. First problem step in first problem of lesson is either clearly 

indicated, or follows established convention (such as top-left cell 

in worksheet) 

37. % of steps where student must change a value in a cell that 

was previously treated as correct (example: self-detection of 

errors) 

38. After student completes step, system indicates where in 

interface next action should occur 

39. % of steps where it is necessary to request hint to figure out 

what to do next 

40. Not immediately apparent what icons in toolbar mean 41. Screen cluttered with interface widgets;  difficult to 

determine where to enter answers 

42. Problem-solving task is not immediately clear 43. Format of answer changes between problem steps without 

clear indication 

44. If student has skipped step, and asks for hint, hints refer to 

skipped step without explicitly highlighting  in interface (ever 

seen) 

45. If student has skipped step, and asks for hint, skipped step is 

explicitly highlighted in interface (ever seen) 

Relevance and Interestingness 

46. % of problems which appear to use real data 47. % of problem statements with story content 

48. % of problem statements with scenarios relevant to potential 

student careers 

49. % of problem statements with scenarios relevant to 

students’ current daily life 

50. % of problem statements which involve fantasy (example: 

being a rock star) 

51. % of problem statements which involve concrete details 

unfamiliar students (example: dog sleds) 

52. % of problem statements which involve concrete 

people/places/things 

53. % of problem statements with text not directly related to 

problem-solving  task 

54. Avg. number of person proper names in problem statements  
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Aspects of “buggy” messages notifying student why action was incorrect 

55. % of buggy messages that indicate concept student 

demonstrated misconception in 

56. % of buggy messages that indicate how student’s action 

was result of procedural error 

57. % of buggy messages that refer solely to interface action 58. Buggy messages given by icon, which can be hovered over 

to receive buggy message 

Design Choices Which Make It Easier to Game the System 

59. % of multiple-choice steps 60. Avg. number of choices in multiple-choice 

61. % of hint sequences with final hint that explicitly tells student  

what the answer is, but not what/how to enter it in the tutor 

software 

62. Hint gives directional feedback (example: “try a larger 

number”) (ever seen) 

63. Avg. number of feasible answers for each problem step  

Meta-Cognition and Complex Conceptual Thinking  

(or features that make them easy to avoid) 

64. Student is prompted to give self-explanations 65. Hints ever give explicit metacognitive advice 

66. % of problem statements that use common word to indicate  

mathematical operation to use (example: “increase”) 

67. % of problem statements that indicate  math operation with 

uncommon terminology (“pounds below normal” for 

subtraction) 

68. % of problem statements that explicitly tell student which 

math operation to use (“add”) 

 

Software Bugs/Implementation Flaws (generally rare) 

69. % of problems where grammatical error is found in problem 

statement 

70. Reference in problem statement to interface component that 

does not exist (ever occurs) 

71. Student can advance to new problem despite still visible 

errors 

72. Hint recommends student do something which is incorrect 

or non-optimal (ever occurs) 

73. % of problem steps where hints are unavailable  

Miscellaneous 

74. Hint requests that student perform some action 75*. Avg. length of text in popup widgets 

76. Value of answer is very large (over four significant digits)  

(ever seen) 

77. % of problem statements which include question or 

imperative 

78. Student selects action from menu, tutor software performs 

action (as opposed to typing in answers, or direct manipulation) 

79. Lesson is an equation-solver lesson 

  

Each tutor lesson’s attributes was represented using the Cognitive Tutor Lesson Variation 

Space version 1.1 (CTLVS1.1) [7], an enumeration of how Cognitive Tutor lessons can 

differ from one another. The CTLVS1.1 was developed by a diverse design team, 

including cognitive psychologists, educational designers, a mathematics teacher, and 

EDM researchers. The CTLVS1.1, shown in Table 2, consists of 79 features for how 

cognitive tutors differ from each other. The CTLVS1.1 was labeled with reference to the 

24 lessons studied in this paper by a combination of educational data mining and hand-

coding by the educational designer and mathematics teacher.  

3 Analysis Methods and Results 

The goal of our analyses was to determine how well each difference in lesson features 

predicts how much students will go off-task in a specific lesson. To this end, we 

combined the labels of the CTLVS1.1 features for each of the 22 lessons in Cognitive 

Tutor Algebra, and the assessments of how often each of the 58 students in the data set 

were off-task in each of the 22 lessons.  

Our first step in conducting the analysis was to determine if the 79 features of the 

CTLVS1.1 grouped into a smaller set of factors. We empirically grouped the 79 features 

of the CTLVS1.1 into 6 factors, using the implementation of Principal Component 

Analysis (PCA) given in SPSS. These same 6 factors were previously successful in 

discovering a factor that was statistically significantly associated with gaming the system 

[7].  
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We analyzed whether the correlation between any of these 6 factors and the frequency of 

off-task behavior was significant. However, none of the factors was statistically 

significantly associated with off-task behavior – the closest factor to significance had 

F(1,21)= 0.37, p=0.55.  

Taking the 79 features individually, only two were found to be statistically significantly 

associated with the choice to go off-task. Using an (overly conservative) Bonferroni 

adjustment [20] to control for the number of statistical tests conducted, only one feature 

was still found to be statistically significant. This feature was whether the lesson was an 

equation-solver lesson (as opposed to other types of lessons, such as story problems). An 

equation-solver lesson is shown at the top of Figure 1. Students were statistically 

significantly less likely to go off-task within equation-solver lessons, r
2
 = 0.55, F(1, 

21)=27.29, p<0.001, Bonferroni adjusted p<0.001.  

To put this relationship into better context, we can look at the proportion of time students 

spent off-task in equation-solver lessons as compared to other lessons. On average, 

students spent 4.4% of their time off-task within the equation-solver lessons, much lower 

than is generally seen in intelligent tutor classrooms [5,6] or, for that matter, in traditional 

classrooms [cf.17, 18]. By contrast, students spent 14.1% of their time off-task within the 

other lessons, a proportion of time-on-task which is much more in line with previous 

observations. The difference in time spent per type of lesson is, as would be expected, 

statistically significant, t(22)=4.48, p<0.001. 

The other feature found to be statistically significantly associated with off-task behavior, 

prior to the Bonferroni adjustment, was the proportion of hints that are solely bottom-out 

hints (more bottom-out-only-hints, less off-task behavior). However, a model including 

both of these two features was not statistically significantly better than the model that 

only considered whether the lesson was an equation-solver lesson, F(1, 21)=0.73, p=0.40. 

4 Discussion and Conclusions 

The results found here suggest that differences between lessons explain a large proportion 

of the variance in how much off-task behavior occurs, just as with gaming the system. 

However, the nature of the models found is quite different. Whereas the model that best 

explains how much gaming occurs was a complex set of fine-grained features [7], the 

model that best explains off-task behavior consists of a single, very coarse-grained 

difference. This leaves us with a problem of interpretation. Why were students off-task so 

much less within these equation-solver lessons?  

One hypothesis is that there is some combination of features distinct to equation-solver 

lessons that produce less off-task behavior, but only when the full combination is 

encountered. For example, it is possible that the combination of features found in the 

equation-solver lessons (such as less complex hints, in combination with direct 

interaction with the equations, in problems that are generally shorter), combine to 

produce a state of very positive continued engagement (e.g. flow [13]) that precludes off-

task behavior.  It may be that this positive engagement is promoted by a specific 

combination of features only found in these lessons, explaining why off-task behavior 
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was not associated with any of the finer-grained features in the CTLVS1.1, once the 

coarser feature of whether the lesson used the equation-solver was included. Relatedly, it 

might be that the task of equation-solving is somehow more engaging, in and of itself, 

than other mathematical problem-solving tasks, leading students to engage in a lower 

degree of off-task behavior.  

A second hypothesis is that teacher behavior causes the lower off-task behavior within 

the equation-solver lessons. A conversation with a colleague with school teaching 

experience indicated that teachers in the United States are often particularly worried 

about students’ performance on equation-solving on state standardized exams (personal 

communication, L.A. Sudol). This concern may lead teachers to monitor a student more 

closely, if the student is working through an equation-solver lesson. This hypothesis 

could be tested through observing teachers’ behavior with quantitative field observations 

[cf. 5], as students use either equation-solver lessons or other lessons. It is worth noting 

that this hypothesis may also help explain the lower incidence of gaming the system in 

equation-solving lessons [e.g. 7].  

Determining which of these hypotheses best explains the lower incidence of off-task 

behavior in equation-solver lessons has the potential to help us understand this behavior 

better. In turn, this knowledge has the potential to aid us in developing learning software 

that students engage with to a greater degree. In doing so, it is essential to avoid 

decreasing off-task behavior in ways that could increase the prevalence of other 

behaviors associated with poorer learning, such as gaming the system. It is also essential 

to avoid reducing off-task behavior in ways that would make instruction generally less 

effective – a potential danger in many visions of educational games in the classroom.   

More broadly, we believe that the methods used in this paper point to new opportunities 

for the field of educational data mining. The creation of taxonomies such as the 

CTLVS1.1 will enable an increasing number of data mining analyses about how 

differences in educational software concretely influence student behavior. In turn, these 

analyses can inform a deeper scientific understanding of the interactions between 

students and educational software.  
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Abstract: It has been recognized that in order to drive Intelligent Tutoring 

Systems (ITSs) into mainstream use by the teaching community, it is essential to 

support teachers through the entire ITS process: Design, Development, 

Deployment, Reflection and Adaptation. Although research has been done on 
supporting teachers through design to deployment of ITSs, there is surprisingly 

little discussion about support for teachers’ Reflection - the ability to draw 

conclusions from ITS usage, and Adaptation - adapting the content to better 

meet the needs of students. We describe our work on developing analysis tools 

and methodologies that support reflection and adaptation by teachers. The work 

was done in the context of helping teachers understand student’s behavior in 

Adaptive Tutorials by post-analysis of the system’s data-logs. We used a hybrid 

solution – part of the data-mining effort is teacher driven and part is automated. 

We tested our approach by comparing the results of expert analysis of two 

Adaptive Tutorials with and without an automated Refinement Suggestion Tool, 

and found it to be a useful teacher’s aid. By using this tool, teachers act as 
‘action researchers’, confirming or disproving their hypotheses about the best 

way to use ITS technology. 

1  Introduction  

Intelligent Tutoring Systems (ITSs) can dramatically increase learners’ comprehension 

by adapting the learning activity to the learners’ needs, based on an intelligent assessment 

of their level of knowledge. This is the “Dream of ITS” (cf. “The Dream of AI”) – that 

one day a system will be “smart” enough to teach better than human teachers. Whether 

this dream is to become a reality is arguable, even as ITS technologies are being 

intensively researched by the scientific community. In recent years, it has been 

recognized that whether or not the dream is realized, we must make ITSs as widely 

available as traditional web based educational systems. However, this is not a 

straightforward task, partially due to the sheer amount of content existing in traditional 

web based systems, compared with the relatively small amount of specialized content 

existing in ITSs[4], and also due to the complex nature of ITS’s and their relative 

inaccessibility to teachers. In order to address this issue, teachers require better support 

through the entire ITS process: Design, Development, Deployment, Reflection and 

Adaptation.  

To-date, research on supporting teachers in the ITS process has been focused on aiding 

teachers to author intelligent content, mainly through the advent of ITS authoring 

tools[10], but it is now clear that the ITS design paradigm needs to be updated. A new 

design paradigm offers teachers a different place in the ITS process; while the core 
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authoring is in the hands of well-prepared design teams, teachers can extend the system 

and fine tune it to meet their specific needs[4].  

This shift in the teacher’s role is also acknowledged in the work of Diana Laurillard who 

proposed the Conversational Framework for the effective use of educational 

technology[6]. The Conversational Framework (CF) can be considered both a learning 

theory and a practical framework for designing educational environments. It models the 

interaction between teachers and learners as a stepwise “conversation” across four 

dimensions: discussion, adaptation, interaction and reflection. In [7], Laurillard describes 

the role of the teacher as an “action researcher”, “collaborating to produce their own 

development of knowledge about teaching with technology”. However, she also argues 

that support for reflection and adaptation is severely lacking with regards to eLearning 

content. This is because teachers rarely have the ability to reflect on (analyze and 

conclude) and adapt (change or edit) software based instructional material. The argument 

is even stronger for intelligent content offered by specialized systems such as ITSs. 

This paper presents work that aims to support teachers through the process of the 

reflection and adaptation of Adaptive Tutorials (AT’s) running on the Adaptive 

eLearning Platform (AeLP)[2]. An important challenge we faced in analyzing the 

Adaptive Tutorials in the AeLP was how to develop data-mining tools for the purpose of 

aiding teachers, without becoming too domain-specific or overwhelming them with a 

large number of association rules or classifiers which are difficult to understand. In 

particular, we aim to ensure the tool is easy to use and do not want to cognitively 

overload the teachers[14]. Moreover, students’ interaction in the AeLP can vary 

dramatically between different AT’s. Our contribution is through developing a 

refinement and adaptation strategy that can scale across different domains. We achieve 

this though a hybrid approach – user-driven and data-driven. The user-driven approach 

manifests itself in the development of an interactive analysis and discovery tool called the 

Adaptive Tutorial Analyzer (ATA). Teachers use the ATA for the purpose of analyzing 

students’ performance in Adaptive Tutorials. The data-driven approach manifests itself in 

the development of a Refinement Suggestion Panel that draws teachers’ attentions to 

patterns in the data that requires their attention. In this paper we show how both of these 

strategies complement each other. 

2 Related work 

Analyzing student behavior in an ITS is a complex problem, and the task of making sense 

of the data in ITS’s logs is within the domain of educational data-mining[13]. Generally 

speaking, educational data mining is a data-driven field motivated to augment human-

programmed knowledge, e.g. to ease the modeling of the correct way a problem should 

be solved ([8]), or to accurately predict a student’s performance based on analysis of 

previous years’ logs ([9]). However, some researchers previously highlighted the fact that 

patterns found in educational systems’ data-sets are only useful if interpreted in the 

pedagogical context of the educational activity. In the work of [5] the researchers used an 

iterative process of discovery and interpretation with the goal of making sense of patterns 

discovered by data-mining algorithms they used.  
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We followed similar reasoning: patterns in the data-logs of Adaptive Tutorials are 

senseless without a teacher’s pedagogical and domain specific insights. However, unlike 

[5] who rely solemnly on analysis of click-streams, the AeLP logs the entire system’s 

internal state per each student’s ‘check’ event (student pressing the ‘check’ button). As 

such, the data-logs are extremely multidimensional, up-to hundreds of attribute-values 

per student action. Furthermore, the system’s snapshot depends on the specifics of the 

Virtual Apparatus (VA) that was used for the Adaptive Tutorial (see [2] for a description 

of how Adaptive Tutorials are constructed from Virtual Apparatuses), and as such we 

need tools that are domain independent but that can be utilized for the purpose of domain 

specific inquiry. 

Another comprehensive study on analyzing ITS’s data-logs was carried by [11] where 

data-mining algorithms were used in order to analyze the logs of a Constraint-Based ITS 

called SQL-Tutor. The researchers used a variety of tools such as WEKA and SQL in 

order to carry out multiple analysis tasks that resulted in some refinement suggestion to 

their system. One difference in our work is that the AeLP is a platform on which 10 

different adaptive tutorials, each equivalent to SQL-Tutor in its scope and depth, are 

currently running. Our approach is thus to enable teachers to conduct analysis tasks, 

rather than specialist data-mining researchers. Furthermore, while the AeLP does use 

constructs analogues to Constraints (called trap-states), for the authoring  of adaptive 

activities, it also uses solution traces, that are closer to Model Tracing based ITS’s. This 

suggests that a richer knowledge representation is required for automated analysis. 

Work on employing mining and visualization in order to analyze students’ trails in a web-

based educational system is also discussed in [12]. The data-set is again a navigation 

pattern or a “click-stream” and the researchers’ approach was to interpret the student’s 

navigation as a graph – considering each hypertext page as a node and transition between 

pages as edges. The tool is meant to be used as an aid for teachers to better understand 

student navigation. While similar to our concept to the AT-Analyzer, our efforts differ 

again in that the trails, or traces we are concerned with are not simply HTML pages 

requested, but traces through an entire solution state-space within an Adaptive Tutorial 

(see [3] for detailed explanation). 

3 The Adaptive eLearning Platform 

The Adaptive eLearning Platform (AeLP) is a web-based implementation of Virtual 

Apparatus Framework for eLearning content development[2]. The AeLP is used for 

authoring Adaptive Tutorials, deploying them to students or into LMSs, monitoring 

student progress and analyzing student behavior. The AeLP has been fielded since 2006 

at the University of New South Wales, where Adaptive Tutorials developed using the 

AeLP have been incorporated into the syllabi of 10 major courses (ranging between 50 to 

600 students per semester), and are accessed by over 2000 students per semester.  

From a pedagogical point of view, AT’s are similar in nature to teaching laboratory 

activities and are analogous to the concept of Tutorial Simulations as described in [6]. 

AT’s exhibit three levels of adaptivity: students experience adaptive feedback with 

remediation targeted to their intrinsic misconceptions, while their activities are also 
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sequenced adaptively based on performance. The third level of adaptivity is content 

adaptation through analysis and reflection. Teachers are provided with analysis tools that 

enable reflection and adaptation of their content. By analyzing students’ behavior, 

teachers can refine and adapt their content, to better meet the needs of their students, e.g.: 

changing questions, adding new adaptive feedback or changing the sequence of activities. 

The work described in this paper concerns development of tools and processes to better 

facilitate this level of adaptation.  

4 User-Driven and Data-Driven Analysis Strategy 

We presented our work on the AT-Analyzer in [3]. The analysis of adaptive tutorials is 

always performed with the purpose of refining and improving them for the next time they 

run. Teachers perform analysis on past AT-Sessions (instances of running an AT on a 

group of students), while the changes are saved to the next AT session. In that sense we 

support the Conversational Framework notion of teachers acting as “action researchers”, 

interested in affirming or disproving their hypotheses regarding their content and its 

effect on learners[7]. Based on their analysis, teachers then need to be able to revise and 

change - to adapt - their content.  

4.1 The Interaction-Snapshot Data Log 

For each student interaction event, the AeLP stores a student-identifiable, time-stamped 

snapshot of the entire system’s inspectable state-space. This state-space contains generic 

AeLP properties (e.g. session.attemptNumber, or inputPanel.selectedChoice) and the 

entire internal state the VA is in (e.g. VA.propertyA and VA.propertyB). The combined set 

of attribute-values is the student’s Interaction-Snapshot-Vector. In addition to the 

interaction snapshot, the data also contains a trap-state ID. This ID is a unique identifier 

of the trap-state that was fired when processing the student’s interaction. This trap-state 

can either be “correct” thus allowing the student to progress in their activity, or it could 

be an error-state, which contains some feedback to be shown to the student. In this way, 

the log database contains not only what the students were doing, but also the system’s 

decision over their interactions.  

4.2 An Example Adaptive Tutorial 

As an example, consider an Adaptive Tutorial that was developed for a 1st year course in 

Solid Mechanics: the Bridge Inspection Simulator [Figure 1]. This AT features a bridge 

simulation, in which students can “drive” a car on a 3 section bridge. Students can 

position the car in different locations on the bridge sections, and take load and shear 

stress measurements on the bridge’s poles and cables using virtual sensors. Here is an 

illustrative example question in this Adaptive Tutorial:  “A second car C2 of mass m2 is 

positioned on section C (right hand side cantilever) of the bridge at x=250m. Position 

your car C1 of mass m1 on section A (left hand side cantilever) such that the tension on 

both sections’ cables is the same. Enter the tension in Newtons in the input panel.” The 

correct trap-state is defined as: car1.x = 60 AND userInput = 60. The teacher then 

defines an error trap-state that targets a familiar misconception. For example if a student 

positions the car at car1.x = 50, the teacher knows that they answered under the false 
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statement added to the previous state. For example, in state 2, the statement ~a v d is the 
next “step” in the problem, however, since it is an error detected by the software, this 
statement is deleted and the problem is returned to state 1. 

4.2 Utility Process 

If our data are labeled, we simply connect all valid solutions to a synthetic goal state. 
However, when goal states are unknown, we need a way to label or measure correct 
attempts. Our proposed utility metric is one way that assumes that frequent features are 
important in the problem solution. From our 523 attempts, we extracted 50 unique 
statements (including 3 given statements) and calculated their frequencies. A partial 
sample of the statement-attempts matrix is shown in Table 2. Note that only the first three 
attempts and only those statements appearing in those three attempts are shown. The 
complete statements-attempts matrix would contain all 50 statements in rows and all 523 
attempts in the columns. To determine statement frequency, we sum each column.  

Table 2. Sample matrix showing the occurrence of elements in student solution attempts.  

Terms 

 a � b c � d -(a � d) a ^ -d a b -d -c b ^ -c 

Attempt 1 1 1 1 1 1 1 1 1 1 

Attempt 2 1 1 1 0 0 1 1 1 1 

Attempt 3 1 1 1 1 0 0 1 0 0 

 

We then graphed the frequency of each statement, and the frequencies of statements 
(number 1-47) with more than 1 usage are shown in Figure 2. Statements 1-22 occurred 
only once in the data, while statements 43-47 occur in over 370 unique student attempts. 
Since there is variation in correct solutions, we set a low threshold frequency of 8 
attempts for statements we might consider “useful” in a proof, and this is true for 
statements 29-47 and higher. A logic instructor verified that all the statements 29-47could 
be expected to occur in correct student solutions, while those with fewer were not as 
useful. The threshold value could be chosen automatically using the frequency profile. 
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Figure 2. Frequency of Statements in Proof  1 



Next we calculate the initial values for MDP states. For the possible goal states (valid 
terminal states), the initial value was a sum of the individual scores given to the 
component statements. Each statement score was +5 if its frequency was above the 
threshold and was -1 for those below. Error states received a value of -2, and all other 
states started at zero. Finally, after the initial values were set we ran a value iteration 
algorithm until the state values stabilized. Note that during value iteration, a -1 
transaction cost was associated with each action taken. 

4.3 Comparing Utility Method to MDP Method 

We use an MDP along with its state values to generate hints that provide students with 
details of the best next state reachable from their current state [3]. To compare the utility 
method to our traditional MDP method we compared the effects of state values on the 
choice of the “best” next state. Both methods create the same 821 states, of which 384 
were valid, non-error states. From the valid states, 180 states had more than one action 
resulting in new state. These 180 states are the ones that we focused on since these are the 
only states that could lead to different hints between the two methods. Comparing the two 
methods, they agree on the next best state in 163 states out of 180 (90.56%). For the 
remaining 17 states where the two methods disagreed, experts identified 4 states where 
the MDP method identified the better choice, 9 states where the utility method identified 
the better choice, and 4 states where the methods were essentially equivalent. These 17 
states can be seen in Table 3, with the highlighted cells marking the expert choice.  

Table 3. States where the methods disagree (17 total states) 

State State Description 
# of 
Possible 
Actions 

MDP 
next 
State 

MDP added 
Statement 

MDP 
Value 

Utility 
Next 
State 

Utility 
added 
Stmt 

Utility 
Value 

1 a>b,c>d,-(a>d) 14 53 -d>-c 49.91 2 -(-a+d) 10.57 
2 a>b,c>d,-(a>d),-(-a+d) 9 238 b 98.00 579 (a*-d) 14.00 
3 a>b,c>d,-(a>d),-(-a+d),a*-d 8 310 -(a*-b) 93.00 310 -(a*-b) 29.00 
4 a>b,c>d,-(a>d),-(-a+d),a*-d,b 4 5 -c 87.72 119 -d>-c 38.74 
7 a>b,c>d,-(a>d),-a+b 6 780 -d>-c 29.00 780 -d>-c 18.00 
8 a>b,c>d,-(a>d),-a+b,-c+d 2 599 b+-c 99.00 10 -(-a+d) 18.02 

19 a>b,c>d,-(a>d),-(-d>-a) 2 20 -(d+-a) 27.13 274 a*-d 7.67 
36 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d 2 170 -c 24.33 186 b 6.04 
53 a>b,c>d,-(a>d),-d>-c 5 460 -(-a+d) 96.00 684 -b>-a 21.00 
82 a>b,c>d,-(a>d),(a*-d),-c 3 84 b 99.00 320 -(a*-b) 14.00 
91 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c 3 92 (a*-d)>(b*-c) 99.00 473 b 19.33 

119 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-d>-c 3 773 -c+d 98.00 120 -c 42.71 
156 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b 2 208 -d>-c 98.00 423 b 29.60 
228 a>b,c>d,-(a>d),a*-d,-d>-c 2 288 -c 76.20 619 b 14.00 
333 a>b,c>d,-(a>d),a*-d,-c+d 2 334 -a+b 99.00 785 -c 19.00 
337 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,b 2 646 -c+d 61.67 339 -c 20.20 
522 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c+d,-d>-c 2 766 -c 99.00 523 -c+d 30.00 

         

These results show that the unsupervised utility metric does at least as good a job as the 
traditional MDP method in determining state values even when it is not known if the 
student attempt was successful. In all cases, the hints that would be delivered with either 
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method would be helpful and appropriate. We believe that the utility metric provides a 
strong way to bias our hint selection toward statements derived by a majority of students, 
which may give students hints at a more appropriate level. 

Before we derived the utility metric presented here, we considered modifying MDP 
values by combining them in a weighted sum with a utility factor after value iteration had 
been completed. In our first attempt to integrate frequency and usefulness into a single 
metric, we analyzed all of our attempts to find derived statements that were necessary to 
complete the proof, by doing a recursive search for reference lines starting from the 
conclusion back through a student’s proof. For each attempt, this “used again” value was 
set to 1 if a derived statement could be reached backward from the goal, and zero 
otherwise. We summed the total times a statement was used again, and compared this 
with the total times a statement occurred in attempts. Table 4 shows the comparison of 
the frequency and used again values for all statements where used again was more than 1. 
The values have no real correlation, but most items that were used again had high (>7) 
frequencies, so we decided that frequency was a relatively good indictor of usefulness in 
the logic proof domain. The “used again” calculation is possible in the logic domain 
because students must provide a justification for the current statement using rules and 
references to prior statements. In other domains, this may not be possible but we believe 
that frequency of occurrence in student solutions indicates that a step is either needed, or 
is a very common step that will only skew state values in a consistent way. 

 Table 4. Comparison of frequency and used again 

Statement Number Statement  Frequency Used Again 

30 (a+c)>(b+d) 8 2 
31 -(a*c)+(b*d) 9 2 
32 -(d+-a) 9 7 
33 (a*-d)>(b*-c) 10 10 
34 -(-d>-a) 15 7 
35 -b>-a 16 5 
36 -(c*-d) 17 6 
37 (a*c)>(b*d) 20 4 
38 -(a*-b) 23 8 
39 (a*-d) 53 44 
40 -d>-c 93 71 
41 -a+b 145 69 
42 -c+d 155 80 
43 -(-a+d) 334 300 
44 -c 367 344 

5 Conclusion and Future Work 

The most important feature of the MDP method is the ability to assign a “value” to the 
states. This allows the tutor to identify the action that will lead to the next state with the 
highest value. In this research we have shown that the utility metric that assigns values to 
terminal states based on the component steps in the state can be used to achieve hint-
source decisions as one that assigns a single value to all goal states.  
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The main contribution of this paper is to show how this new utility metric can be used to 
generate MDP values based on features of student solution attempts. Our results show 
that the utility metric could be used to achieve equivalent or better hints than our prior 
single-goal MDP approach. This is significant because the utility metric does not require 
a known goal state, so it can be applied in domains where the correctness of the student 
attempts is unknown, or difficult or costly to compute. We believe that this utility metric 
combined with our MDP method can be used to generate hints for a computer 
programming tutor. In this domain, it is difficult to say that a program is complete, but it 
is possible to say whether specific features are represented. The method of using a term-
document matrix to determine utility could also be extended into using more complicated 
LSI techniques which would be a natural fit for tutors using textual answers such as essay 
response questions. Text based answers are prevalent in legal reasoning and medical 
diagnosis tutors. 

In our future work, we plan to construct and compare traditional and utility-based MDPs 
for other proofs and for student work in other domains. We also plan to analyze our logic 
tutor hint data to see if the utility method would result in different hints. This will give an 
indication of how much the utility technique is needed for our logic tutor. We also plan to 
analyze log data compiled from a C++ programming course to determine what kind of 
features we might extract and how well we can calculate the utility of those features.  
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