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Abstract. Recent research has suggested that differences between intelligent 

tutor lessons predict a large amount of the variance in the prevalence of gaming 

the system [4]. Within this paper, we investigate whether such differences also 

predict how much students choose to go off-task, and if so, which differences 

predict how much off-task behavior will occur. We utilize an enumeration of the 

differences between intelligent tutor lessons, the Cognitive Tutor Lesson 

Variation Space 1.1 (CTLVS1.1), to identify 79 differences between tutor 

lessons, within 20 lessons from an intelligent tutoring system for Algebra. We 

utilize a machine-learned detector of off-task behavior to predict 58 students’ 

off-task behavior within that tutor, in each lesson. Surprisingly, the best model 

predicting off-task behavior from lesson features contains only one feature: 

lessons that involve equation-solving. We discuss possible explanations for this 

finding, and further studies that could shed light on this relationship.  

1 Introduction 

What underlies students’ choices, while they use educational software? In particular, why 

do students choose to game the system or go off-task, while using educational software? 

Much of the research on these questions has focused on the role that stable or semi-stable 

student individual differences play in driving these types of behaviors [2, 3, 8, 9]. Take, 

for example, the case of gaming the system (“attempting to succeed in an interactive 

learning environment by exploiting properties of the system rather than by learning the 

material” [cf. 5]). Several studies have been published that attempt to explain gaming 

behavior in terms of stable or semi-stable individual differences between students, such 

as a student’s attitude towards mathematics or goal orientation [2, 8, 9]. These studies 

have generally found statistically significant relationships. However, the relationships 

found in these studies only explain 5-9% of the variance in gaming behavior (r
2
 = 0.05 to 

0.09) [2,8], a relatively low degree of explanatory power.  

By contrast, [7] found that the differences between intelligent tutor lessons predict a large 

proportion of the variance in gaming behavior. In an analysis of 58 students’ behavior 

within 20 lessons in an intelligent tutor for algebra (corresponding to the majority of a 

year’s curriculum), a combination of features of tutor lessons was found to predict 56% 

of the variance in gaming behavior (r
2
 = 0.56). In particular, lessons that incorporated 

interest-increasing text into problem scenarios had significantly less gaming; lessons with 

various types of ambiguity had more gaming; lessons with ineffective hints had more 

gaming; and lessons based on equation-solving had less gaming. These results suggest 

that it may be possible to bypass the intrusiveness and high development costs of 

interactive responses to gaming [cf. 1, 4, 22] simply by altering these features of lessons, 
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designing lessons with less extraneous ambiguity and more attempts to increase student 

interest.  

The discovery that gaming the system can be well predicted by small-scale differences in 

educational software design raises the question of whether other prominent learner 

behaviors are similarly associated with small-scale features of software design.  In this 

paper, we investigate whether small-scale differences in software design can predict 

variance in off-task behavior. Off-task behavior shares many characteristics with gaming 

behavior. Both behaviors have been found to be associated with poorer learning in 

intelligent tutoring systems, although gaming the system’s impact on learning is both 

larger and more immediate [6, 11]. Additionally, the two behaviors have each been found 

to be weakly associated with some of the same student individual differences [3], in 

particular negative attitudes towards computers and mathematics.  

In this study, we apply a previously validated detector of off-task behavior [3] to data 

obtained from the PSLC DataShop [15], representing an entire school year of use of 

Cognitive Tutor Algebra, a widely used intelligent tutoring system. During the school 

year, students worked through a variety of lessons on different topics. These lessons had 

moderate variation in subject matter and considerable variation in design, making it 

possible to observe which differences in subject matter and/or design are associated with 

differences in how much off-task behavior occurs. We apply an existing taxonomy of the 

differences between tutor lessons [7] to these lessons, and investigate which lesson 

features are most strongly associated with off-task behavior. 

2 Data and Models Applied 

Data was obtained from the PSLC DataShop [15] (dataset: Algebra I 2005-2006 

Hampton Only), for 58 students’ use of Cognitive Tutor Algebra during an entire school 

year. The data set was composed of approximately 437,000 student transactions (entering 

an answer or requesting help) in the tutor software. All of the students were enrolled in 

algebra classes in one high school in the Pittsburgh suburbs. The school used Cognitive 

Tutors two days a week, as part of its regular mathematics curriculum. None of the 

classes were composed predominantly of gifted or special needs students. The students 

were in the 9
th

 and 10
th

 grades (approximately 14-16 years old).  

The Cognitive Tutor Algebra curriculum involves 32 lessons, covering a complete 

selection of topics in algebra, including formulating expressions for word problems, 

equation solving, and algebraic function graphing. Three lessons from Cognitive Tutor 

Algebra are shown in Figure 1. Data from 8 lessons was eliminated from consideration, 

as taxonomy codings were not available for those lessons (these lessons were not coded 

in [7], due to having limited data from those lessons available for that paper’s analyses of 

interest). On average, each student completed 10.7 tutor lessons (among the set of 24 

lessons considered), for a total of 619 student/lesson pairs.  
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To determine how often each student was off-task, in each lesson, each student’s actions 

were labeled using Baker’s [3] detector of off-task behavior. The detector was developed 

using data from 429 students’ classroom use of three lessons from an intelligent tutor on 

middle school mathematics. Applying this detector makes it tractable to study off-task 

behavior across a wide variety of tutor lessons. By contrast, other well-known methods 

are intractable – for instance, conducting quantitative field observations on a similar 

number of tutor lesssons and students would involve sending out two or more research 

assistants to classrooms for an entire year.   

The detector, under cross-validation, achieved a correlation of 0.55 to field observations 

of off-task behavior – hence, it can be considered reasonably reliable for these purposes. 

The detector is also able to distinguish off-task behavior from on-task conversation, by 

looking at the student actions that occur immediately before and after a seemingly idle 

pause. We show the model that predicts off-task behavior within the detector in Table 1. 

The detector makes a prediction as to whether each action is off-task, and then aggregates 

across actions to indicate what proportion of student actions was off-task (or, 

alternatively, what proportion of student time was off-task). Full details on this detector 

are available in [3]. Two features (F3 and F6) involved features that were not available 

for this data set (string and generally-known). However, F3 and F6 together accounted 

for only 4.4% of the cross-validated correlation accounted for by this model [3] – hence, 

this model can still be expected to be accurate even in the absence of these features.  

Table 1.  The model of off-task behavior (OT) used in this paper, from [3]. In all cases, param1 is 

multiplied by param2, and then multiplied by value. Then the six features are added together. If the 

sum is greater than 0.5, the action is considered to be off-task. Features that were not applicable to 

the current data set are indicated in gray. “Pknowretro”, a feature found in many behavior 

detectors, refers to the probability the student knew the skill if the action was the first opportunity to 

practice the current skill on the current problem step, and is -1 otherwise.  

 param 1 param 2 value Interpretation 

F1 timelast3SD timelast5SD -0.08 

OT: Very fast actions immediately 

before or after very slow actions 

F2 timeSD timeSD 0.013 

OT: Extremely fast actions or 

extremely slow actions 

F3 string pknowretro -0.36 

OT: Less likely on well-known string-

input steps  

OT: More likely when inputting a 

string after error  

F4 notfirstattempt recent8help -0.38 Not OT: Asking for a lot of help 

F5 notright pknowretro -0.16 

OT: Two errors or help-requests in a 

row 

Not OT: Errors or help requests on 

skills the student has already mastered 

F6 pctwrong 

generally-

known 0.04 

OT: Indicated by many errors on skills 

students generally know prior to 

starting this lesson 
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Table 2. The 79 features of the Cognitive Tutor Lesson Variation Space (CTLVS1.1) used in study. 

Features captured using data mining methods (as opposed to hand-coding) marked with *. 

Difficulty, Complexity of Material, and Time-Consumingness 

1*. Avg. % error 2. Lesson consists solely of review of material encountered in 

previous lessons 

3*. Avg. probability that student will learn a skill at each 

opportunity to practice skill [cf. 12] 

4*. Avg. initial probability that student will know a skill when 

starting tutor [cf. 12] 

5. Avg. # of “distractor” values per problem 6. % of problems where “distractor” values given 

7. Max number of mathematical operators needed to give correct 

answer on any step in lesson 

8. Maximum number of mathematical operators mentioned in 

hint on any step in lesson 

9. Intermediate calculations must be done outside of software 

(mentally or on paper) for some problem steps (ever occurs) 

10. % of hints that discuss intermediate calculations that must 

be done outside of software 

11*. Total number of skills in lesson 12*. Avg. time per problem step 

13. % of problem statements that incorporate multiple 

representations (ex: diagram and text) 

14. % of problem statements that use same numeric value for 

two constructs 

15. Avg. number of distinct/separable questions or problem-

solving tasks per problem 

16. Maximum number of distinct/separable questions or 

problem-solving tasks in any problem 

17. Avg. # of numbers manipulated per step 18*. Avg. # of times each skill repeated per problem 

19*. Number of problems in lesson 20*. Avg. time spent in lesson 

21. Avg. number of problem steps per problem 22. Minimum number of answers or interface actions required 

to complete problem 

Quality of Help Features 

23*. Avg. amount that reading on-demand hints improves 

performance on future opportunities to use skill [cf. 10] 

24*. Avg. Flesch-Kincaid Grade Reading Level [16] of hints 

25. % of hints using inductive support, going from example to 

abstract concept/principle 

26. % of hints that explicitly explain concepts or principles 

underlying current problem-solving step 

27. % of hints that explicitly refer to abstract principles 28.  On average, # of hints must student request before concrete 

features of problems are discussed 

29. Avg. number of hint messages per hint sequence that orient 

student to math sub-goal 

30. % of hints that explicitly refer to scenario content (instead 

of solely math constructs) 

31. % of hint sequences that use terminology specific to this 

software 

32. % of hint messages which refer solely to interface features 

33. % hint messages that teacher can’t understand 34. % of hint messages with complex noun phrases 

35. % of skills where the only hint message explicitly tells 

student what to do 

 

Usability 

36. First problem step in first problem of lesson is either clearly 

indicated, or follows established convention (such as top-left cell 

in worksheet) 

37. % of steps where student must change a value in a cell that 

was previously treated as correct (example: self-detection of 

errors) 

38. After student completes step, system indicates where in 

interface next action should occur 

39. % of steps where it is necessary to request hint to figure out 

what to do next 

40. Not immediately apparent what icons in toolbar mean 41. Screen cluttered with interface widgets;  difficult to 

determine where to enter answers 

42. Problem-solving task is not immediately clear 43. Format of answer changes between problem steps without 

clear indication 

44. If student has skipped step, and asks for hint, hints refer to 

skipped step without explicitly highlighting  in interface (ever 

seen) 

45. If student has skipped step, and asks for hint, skipped step is 

explicitly highlighted in interface (ever seen) 

Relevance and Interestingness 

46. % of problems which appear to use real data 47. % of problem statements with story content 

48. % of problem statements with scenarios relevant to potential 

student careers 

49. % of problem statements with scenarios relevant to 

students’ current daily life 

50. % of problem statements which involve fantasy (example: 

being a rock star) 

51. % of problem statements which involve concrete details 

unfamiliar students (example: dog sleds) 

52. % of problem statements which involve concrete 

people/places/things 

53. % of problem statements with text not directly related to 

problem-solving  task 

54. Avg. number of person proper names in problem statements  
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Aspects of “buggy” messages notifying student why action was incorrect 

55. % of buggy messages that indicate concept student 

demonstrated misconception in 

56. % of buggy messages that indicate how student’s action 

was result of procedural error 

57. % of buggy messages that refer solely to interface action 58. Buggy messages given by icon, which can be hovered over 

to receive buggy message 

Design Choices Which Make It Easier to Game the System 

59. % of multiple-choice steps 60. Avg. number of choices in multiple-choice 

61. % of hint sequences with final hint that explicitly tells student  

what the answer is, but not what/how to enter it in the tutor 

software 

62. Hint gives directional feedback (example: “try a larger 

number”) (ever seen) 

63. Avg. number of feasible answers for each problem step  

Meta-Cognition and Complex Conceptual Thinking  

(or features that make them easy to avoid) 

64. Student is prompted to give self-explanations 65. Hints ever give explicit metacognitive advice 

66. % of problem statements that use common word to indicate  

mathematical operation to use (example: “increase”) 

67. % of problem statements that indicate  math operation with 

uncommon terminology (“pounds below normal” for 

subtraction) 

68. % of problem statements that explicitly tell student which 

math operation to use (“add”) 

 

Software Bugs/Implementation Flaws (generally rare) 

69. % of problems where grammatical error is found in problem 

statement 

70. Reference in problem statement to interface component that 

does not exist (ever occurs) 

71. Student can advance to new problem despite still visible 

errors 

72. Hint recommends student do something which is incorrect 

or non-optimal (ever occurs) 

73. % of problem steps where hints are unavailable  

Miscellaneous 

74. Hint requests that student perform some action 75*. Avg. length of text in popup widgets 

76. Value of answer is very large (over four significant digits)  

(ever seen) 

77. % of problem statements which include question or 

imperative 

78. Student selects action from menu, tutor software performs 

action (as opposed to typing in answers, or direct manipulation) 

79. Lesson is an equation-solver lesson 

  

Each tutor lesson’s attributes was represented using the Cognitive Tutor Lesson Variation 

Space version 1.1 (CTLVS1.1) [7], an enumeration of how Cognitive Tutor lessons can 

differ from one another. The CTLVS1.1 was developed by a diverse design team, 

including cognitive psychologists, educational designers, a mathematics teacher, and 

EDM researchers. The CTLVS1.1, shown in Table 2, consists of 79 features for how 

cognitive tutors differ from each other. The CTLVS1.1 was labeled with reference to the 

24 lessons studied in this paper by a combination of educational data mining and hand-

coding by the educational designer and mathematics teacher.  

3 Analysis Methods and Results 

The goal of our analyses was to determine how well each difference in lesson features 

predicts how much students will go off-task in a specific lesson. To this end, we 

combined the labels of the CTLVS1.1 features for each of the 22 lessons in Cognitive 

Tutor Algebra, and the assessments of how often each of the 58 students in the data set 

were off-task in each of the 22 lessons.  

Our first step in conducting the analysis was to determine if the 79 features of the 

CTLVS1.1 grouped into a smaller set of factors. We empirically grouped the 79 features 

of the CTLVS1.1 into 6 factors, using the implementation of Principal Component 

Analysis (PCA) given in SPSS. These same 6 factors were previously successful in 

discovering a factor that was statistically significantly associated with gaming the system 

[7].  
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We analyzed whether the correlation between any of these 6 factors and the frequency of 

off-task behavior was significant. However, none of the factors was statistically 

significantly associated with off-task behavior – the closest factor to significance had 

F(1,21)= 0.37, p=0.55.  

Taking the 79 features individually, only two were found to be statistically significantly 

associated with the choice to go off-task. Using an (overly conservative) Bonferroni 

adjustment [20] to control for the number of statistical tests conducted, only one feature 

was still found to be statistically significant. This feature was whether the lesson was an 

equation-solver lesson (as opposed to other types of lessons, such as story problems). An 

equation-solver lesson is shown at the top of Figure 1. Students were statistically 

significantly less likely to go off-task within equation-solver lessons, r
2
 = 0.55, F(1, 

21)=27.29, p<0.001, Bonferroni adjusted p<0.001.  

To put this relationship into better context, we can look at the proportion of time students 

spent off-task in equation-solver lessons as compared to other lessons. On average, 

students spent 4.4% of their time off-task within the equation-solver lessons, much lower 

than is generally seen in intelligent tutor classrooms [5,6] or, for that matter, in traditional 

classrooms [cf.17, 18]. By contrast, students spent 14.1% of their time off-task within the 

other lessons, a proportion of time-on-task which is much more in line with previous 

observations. The difference in time spent per type of lesson is, as would be expected, 

statistically significant, t(22)=4.48, p<0.001. 

The other feature found to be statistically significantly associated with off-task behavior, 

prior to the Bonferroni adjustment, was the proportion of hints that are solely bottom-out 

hints (more bottom-out-only-hints, less off-task behavior). However, a model including 

both of these two features was not statistically significantly better than the model that 

only considered whether the lesson was an equation-solver lesson, F(1, 21)=0.73, p=0.40. 

4 Discussion and Conclusions 

The results found here suggest that differences between lessons explain a large proportion 

of the variance in how much off-task behavior occurs, just as with gaming the system. 

However, the nature of the models found is quite different. Whereas the model that best 

explains how much gaming occurs was a complex set of fine-grained features [7], the 

model that best explains off-task behavior consists of a single, very coarse-grained 

difference. This leaves us with a problem of interpretation. Why were students off-task so 

much less within these equation-solver lessons?  

One hypothesis is that there is some combination of features distinct to equation-solver 

lessons that produce less off-task behavior, but only when the full combination is 

encountered. For example, it is possible that the combination of features found in the 

equation-solver lessons (such as less complex hints, in combination with direct 

interaction with the equations, in problems that are generally shorter), combine to 

produce a state of very positive continued engagement (e.g. flow [13]) that precludes off-

task behavior.  It may be that this positive engagement is promoted by a specific 

combination of features only found in these lessons, explaining why off-task behavior 
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was not associated with any of the finer-grained features in the CTLVS1.1, once the 

coarser feature of whether the lesson used the equation-solver was included. Relatedly, it 

might be that the task of equation-solving is somehow more engaging, in and of itself, 

than other mathematical problem-solving tasks, leading students to engage in a lower 

degree of off-task behavior.  

A second hypothesis is that teacher behavior causes the lower off-task behavior within 

the equation-solver lessons. A conversation with a colleague with school teaching 

experience indicated that teachers in the United States are often particularly worried 

about students’ performance on equation-solving on state standardized exams (personal 

communication, L.A. Sudol). This concern may lead teachers to monitor a student more 

closely, if the student is working through an equation-solver lesson. This hypothesis 

could be tested through observing teachers’ behavior with quantitative field observations 

[cf. 5], as students use either equation-solver lessons or other lessons. It is worth noting 

that this hypothesis may also help explain the lower incidence of gaming the system in 

equation-solving lessons [e.g. 7].  

Determining which of these hypotheses best explains the lower incidence of off-task 

behavior in equation-solver lessons has the potential to help us understand this behavior 

better. In turn, this knowledge has the potential to aid us in developing learning software 

that students engage with to a greater degree. In doing so, it is essential to avoid 

decreasing off-task behavior in ways that could increase the prevalence of other 

behaviors associated with poorer learning, such as gaming the system. It is also essential 

to avoid reducing off-task behavior in ways that would make instruction generally less 

effective – a potential danger in many visions of educational games in the classroom.   

More broadly, we believe that the methods used in this paper point to new opportunities 

for the field of educational data mining. The creation of taxonomies such as the 

CTLVS1.1 will enable an increasing number of data mining analyses about how 

differences in educational software concretely influence student behavior. In turn, these 

analyses can inform a deeper scientific understanding of the interactions between 

students and educational software.  
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